
Notes on specifying systems in EST

Robert Meolic, Tatjana Kapus
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova ulica 17, SI-2000 Maribor, Slovenia

{meolic,kapus}@uni-mb.si

Abstract

EST is a tool for formal verification of systems. A sys-
tem to be verified should be specified in a CCS-like syntax.
CCS has been chosen because it is widely used in theoret-
ical approaches due to a relatively small set of operators
and nice laws valid for them. In this paper we make an
overview of operators supported by EST. They can be clas-
sified into two groups: standard CCS operators and addi-
tional operators which we introduced to shorten specifica-
tions and to facilitate traslations from other formalisms.

1 Introduction

EST (Efficient Symbolic Tools [4]) is a collection of
verification tools. Among others it includes an equiva-
lence checker and an ACTLW model checker. It is ori-
ented toward action-based formalisms, and thus each sys-
tem is internally represented as a labelled transition sys-
tem (LTS). EST also includes a parser for CCS-like speci-
fications. The aim of this parser is to read the specification
and create an adequate LTS. In general, a given CCS-like
specification has more than one adequate LTS, and from
practical reasons it is best to create the smallest one. How-
ever, this paper does not address this problem.

In Section 2 we describe standard CCS operators sup-
ported by EST and present a simple example of system
specification. In Section 3 we define additional opera-
tors and present another example of specification in EST
demonstrating their use. In Conclusion we give some re-
marks.

2 Standard CCS operators

An LTS M is a quadruple (S,Aτ , δ, s0) where:

• S is a non-empty set of states;

• Aτ is a non-empty set of actions containing observ-
able actions and an unobservable action τ ;

• δ ⊆ S ×Aτ × S is the transition relation;

• s0 is the initial state.

Set Aτ is called an alphabet of LTS M. EST requires
that there exists a mapping between actions in Aτ such
that each observable action a ∈ Aτ has a coaction ā ∈ Aτ

and ¯̄a = a. Moreover, EST requires that the labels for
action and its coaction differ only in the first character
which is called a prefix and should be either “?” or “!”.
If the first character in the label of an observable action a
is deleted we get an action name, denoted by â. For ex-
ample, actions !stop and ?stop have both action name
stop. A triple (s, a, s′) ∈ δ is called an a-transition or
shortly a transition from state s to state s′. If there ex-
ists (s, a, s′) ∈ δ, then we may also say that the LTS can
execute an action a in state s.

CCS (Calculus of Communicating Systems, [5]) is a
process calculus. Due to the nice laws valid for its oper-
ators it is also classiffied as process algebra. Each CCS
expression defines a process (also called an agent). CCS
operators supported by EST are:

• Prefix (.),
• Summation (+),
• Composition (|),
• Restriction (\), and
• Relabelling ([]).

To define these operators, we recall rules from [5]. We
suppose that M, M1, and M2 are LTSs while a and b are
actions.

Operator Prefix is defined with the following rule:

Prefix
a.M

a
→M

This rule expresses that process a.M can execute action
a and afterwards behave as process M. This means that
the initial state of the LTS representing process a.M has
an a-transition to the initial state of the LTS representing
process M.

Operator Summation is defined with the following two
rules:

Sum1 M1
a
→M′

1

(M1 + M2)
a
→M′

1

Sum2 M2
a
→M′

2

(M1 + M2)
a
→M′

2

PREPRINT for ERK’2006, September 25-27, 2006, Portorož, Slovenia

These rules state that if any process participating in the
summation can execute action a, then the sum can also ex-
ecute action a. This means that the initial state of the LTS
representing process M1 + M2 has exactly those tran-
sitions which are present in the initial states of the LTSs
representing processes M1 and M2.

Operator Composition is defined as follows:

Com1 M1
a
→M′

1

(M1|M2)
a
→ (M′

1|M2)

Com2 M2
a
→M′

2

(M1|M2)
a
→ (M1|M′

2)

Com3 M1
a
→M′

1 M2
ā
→M′

2

(M1|M2)
τ
→(M′

1|M
′

2)
(a 6= τ)

The initial state of the LTS representing process M1|M2

has all those transitions which are present in the initial
states of the LTSs representing processes M1 and M2

and one τ -transition for each a-transition starting in the
initial state of the LTS representing process M1 for which
an ā-transition exists in the initial state of the LTS repre-
senting process M2.

In EST, operator Restriction is defined as follows:

Res M
a
→M′

(M\b̂)
a
→(M′\b̂)

(b 6= τ, a = τ ∨ â 6= b̂)

States in the LTS representing process M\b̂ have exactly
those transitions which are present in the LTS reperesent-
ing process M and are labelled with an action whose ac-
tion name is not equal to b̂.

Finally, we define operator Relabelling. Let Aτ be the
alphabet of process M and let f : Aτ −→ Aτ be a re-
labelling function such that f(ā) = f(a) and f(τ) = τ .
Then:

Rel M
a
→M′

M[f]
f(a)
→ M′[f]

As stated by the rule, an LTS representing process M[f]
can be obtained from LTS representing process M by
changing all transition labels according to the relabelling
function f . In EST, a relabelling function is given as a
pair of action names and thus it can rename only one ac-
tion. If more than one action is to be relabelled, a chain of
relabelling operations is used.

The equivalence of specifications is defined by equiva-
lence of the processes they define. We take that two spec-
ifications are equivalent only if the processes they define
are strongly equivalent [5]. The following basic laws for
defined operators are consistent with this presumption:

• M1 + M2 = M2 + M1

• (M1 + M2) + M3 = M1 + (M2 + M3)

• M1|M2 = M2|M1

• (M1|M2)|M3 = M1|(M2|M3)

• M\â\b̂ = M\b̂\â

Moreover, operator Composition is distributive over
operator Summation:

M1 | (M2 + M3) = (M1|M2) + (M1|M3)

The opposite is not true. Also, the operator Prefix is
distributive neither over operator Summation nor over op-
erator Composition:

• M1 + (M2|M3) 6= (M1 + M2) | (M1 + M3)

• a.(M1 + M2) 6= a.M1 + a.M2

• a.(M1|M2) 6= a.M1 | a.M2

The commutativity and associativity of the operators
enable us to omit parentheses when the same operator is
used sucessively two or more times. As an example, let
us consider the classic Dining philosophers problem. Ac-
tion names in this system are think, eat, takeleft,
takeright, dropleft, and dropright. Regard-
ing the number of philosophers the specification also in-
cludes action names think1, think2, ...,eat1, eat2,
..., take1, take2, ..., and drop1, drop2, Here
is a complete EST specification of the system with two
philosophers:

PHILO = !think.
!takeleft.!takeright.
!eat.
!dropleft.!dropright.PHILO

FORK = ?take.?drop.FORK

DINNER = (
PHILO [think1/think]

[take2/takeleft]
[take1/takeright]
[eat1/eat]
[drop2/dropleft]
[drop1/dropright]

| FORK [take1/take]
[drop1/drop]

| PHILO [think2/think]
[take1/takeleft]
[take2/takeright]
[eat2/eat]
[drop1/dropleft]
[drop2/dropright]

| FORK [take2/take]
[drop2/drop]

)\take1\drop1\take2\drop2

The name of the process representing the system is
DINNER. It is composed of two instances of process
PHILO and two instances of process FORK. To get a

2

proper composition of processes, operators Relabelling
and Restriction have to be used. Figures 1 and 2 show
the LTSs generated by EST for the given specification.

PHILO FORK

!think

!takeleft

!takeright

!eat

!dropleft

?drop
?take

!dropright

Figure 1: LTSs representing a philosopher and a fork

3 Additional operators

CCS is quite a simple formalism and it is not very prac-
tical for specification of real systems. To enhance it a lit-
tle, we extended the parser in EST with some operators
from other formalisms.

Let M1, and M2 be LTSs with possibly different al-
phabets Aτ and A′

τ , respectively. Let a be an action and
A ⊆ Aτ ∪ A′

τ − {τ}. First, we introduce operators Syn-
chronisation (||) and Interleaving (|||):

Syn1 M1
a
→M′

1

(M1||M2)
a
→ (M′

1||M2)
(a=τ ∨ ā 6∈A′

τ)

Syn2 M2
a
→M′

2

(M1||M2)
a
→ (M1||M′

2)
(a=τ ∨ ā 6∈Aτ)

Syn3 M1
a
→M′

1 M2
ā
→M′

2

(M1||M2)
τ
→(M′

1||M
′

2)
(a 6= τ)

Int1 M1
a
→M′

1

(M1|||M2)
a
→ (M′

1|||M2)

Int2 M2
a
→M′

2

(M1|||M2)
a
→ (M1|||M′

2)

!think1!think2

!think2

!think2

!think1

!think1

!think2 !think1

!think2!think1

!eat1 !eat2

!think1!think2 !eat2!eat1

DINNER

τ

τ

τ

ττ

τ

τ

ττ τ

τ τ

ττ

ττ

τ τ

Figure 2: An LTS of the system with two philosophers

Next, operator Partial synchronisation (|[]|) is defined
with the following rules:

Part1 M1
a
→M′

1

(M1|[A]|M2)
a
→ (M′

1|[A]|M2)
(a /∈ A)

Part2 M2
a
→M′

2

(M1|[A]|M2)
a
→ (M1|[A]|M′

2)
(a /∈ A)

Part3 M1
a
→M′

1 M2
ā
→M′

2

(M1|[A]|M2)
τ
→(M′

1|[A]|M′

2)
(a ∈ A)

Operator Partial synchronisation is a generalisation of op-
erators Synchronisation and Interleaving. They can be
both derived from it:

M1||M2 = M1|[Aτ ∩ A′

τ − {τ}]|M2

M1|||M2 = M1|[∅]|M2

Operator Synchronisation can also be derived from oper-
ators Composition and Restriction: If Aτ ∩ A′

τ − {τ} =
{a1, a2, . . . , an}, then:

M1||M2 = (M1|M2)\â1\â2 . . . \ân

Operators Synchronisation, Interleaving, and Partial
synchronisation are all commutative. Operator Interleav-
ing is also associative. Operators Synchronisation and

3

Partial synchronisation are not associative and are in EST
resolved from left to right. Similar operators are present
in CSP [3] and LOTOS [1]. A good comparison of CCS
and CSP operators is in [6].

Furthermore, we define a useful abbreviation sup-
ported by the EST parser. Let M be an LTS and
ai,1, ai,2, . . . , ai,ni

∈ Aτ for all i ∈ [1, N]. Moreoever,
let Ai stand for ai,1.ai,2.ai,ni

and let A′

i stand for
ai,2.ai,ni

. Then, the following abbreviation is al-
lowed in the specification:

(A1+A2+. . .+AN).M , A1.M+A2.M+. . .+AN .M

The following rule can be stated for it:

PrefixN
(A1 + . . . + Ai + . . . + AN).M

ai,1

→ A′

i.M

As an example let us consider the Gas Station problem
[2] given in EST with the following specification:

OPERATOR =
(?prepay1+?prepay2).OP_PREPAID +
(?charge1+?charge2).OP_CHARGED

OP_PREPAID =
(?avlbl.!act+!occupied).OPERATOR

OP_CHARGED =
(!change1+!change2).
(?wait.!act+!none).OPERATOR

QUEUE = !avlbl.QUEUE_ACTIVE
QUEUE_ACTIVE =

?none.QUEUE +
?occupied.!wait.QUEUE_ACTIVE

PUMP =
?act.
(?start1+?start2).
(?finish1+?finish2).
(!charge1+!charge2).PUMP

CUST =
!prepay.!start.!stop.?change.CUST

STATION =
OPERATOR
|[avlbl,occupied,none,wait]|
QUEUE
|[activate,charge1,charge2]|
PUMP

CUSTOMERS =
CUST [prepay1/prepay][start1/start]

[stop1/stop][change1/change]
|||
CUST [prepay2/prepay][start2/start]

[stop2/stop][change2/change]
SYSTEM =

STATION
|[start1,start2,finish1,finish2]|
CUSTOMERS

The system consists of an operator, a pump, and cus-
tomers. A queue is added to the system for holding cus-
tomers requests. The operator initially accepts money pre-
paid by customers and then activates the pump if it is
available. On receiving the charge information from the
pump, the operator gives the change to the customer. An
LTS representing the operator is given in Figure 3.

OPERATOR

?prepay2
?prepay1

!occupied
?avlbl

!act !none

?charge1
?charge2

!change1
!change2

?wait

Figure 3: A detail from the Gas Station problem

Due to the lack of space we cannot discuss the Gas
Station problem in detail. Let us only mention that the
system obtained from the given specification is not correct
because customers can receive the wrong change.

4 Conclusion

This paper presents the operators supported by parser
in EST. Beside CCS-like operators, the parser includes
additional operators similar to those from CSP and LO-
TOS. However, one should be careful about the meaning
of these operators. Namely, in CSP and LOTOS two pro-
cesses synchronise with each other by executing the same
action. On the other hand, our definitions follow the CCS
style and thus two processes synchronise with each other
by simultaneous execution of an action and its coaction.
The result of synchronisation is unobservable action τ .

References

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO
Specification Language LOTOS. Computer Networks and
ISDN Systems, 14(1):25–59, January 1987.

[2] S.C. Cheung and J. Kramer. Checking Subsystem Safety
Properties in Compositional Reachability Analysis. In The
Proceedings of ICSE, pages 144–154, 1996.

[3] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[4] Robert Meolic. EST Home Page.
http://lms.uni-mb.si/EST/.

[5] R. Milner. Communication and Concurrency. Prentice-Hall
International Series in Computer Science, 1989.

[6] R.J. van Glabbeek. Notes on the Methodology of CCS and
CSP. Theoretical Computer Science, 177:329–349, 1997.

4

