
Demonstration of Sorting Algorithms on Mobile Platforms

Robert Meolic
Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

meolic@uni-mb.si

This is an extended version of the paper published in the proceedings of CSEDU 2013, pp. 136-141, 2013.

Keywords: Learning Software, Mobile Learning, Computer Science, Engineering Education

Abstract: This paper presents a systematic approach to the implementation of a mobile framework for demonstrating
of sorting algorithms. Well-known corresponding projects are listed. The pseudo-code form is discussed,
together with the graphical presentation of actions. A set of atomic operations that reveal the concept of
sorting algorithms has been identified. Implementations of Gnome Sort, Insertion Sort, and Quicksort are
given as a portable C-style code. The presented code has been tested within a prototype application on a
modern smartphone. The project was oriented towards the usage in mobile learning systems.

1 INTRODUCTION

There are many subjects and concepts within com-
puter science. Some of them are broad and extensive
whilst others are relatively narrow and specific. Sort-
ing algorithms can be classified into the last group
as long as we are not creating science from them
(Vitanyi, 2007). In (Skiena, 2008) the author states
that sorting is the fundamental algorithmic problem
in computer science and that learning the different
sorting algorithms is like learning scales for a musi-
cian. Indeed, sorting is the first step in solving a host
of other algorithmic problems. Pseudo-codes of dif-
ferent sorting algorithms and their implementation in
different programming languages can easily be found
on the internet (Wikipedia, 2012), (Rosetta Code,
2012). However, the most respected reference is the
3rd volume of Knuth’s encyclopedia (Knuth, 1998).

The number of mobile platforms has been increas-
ing rapidly, and it is expected that they will influence
the education process at least as much as personal
computers and the internet. The benefits of mobile
learning include learning from rich interactive con-
tent (in contrast to books), flexible learning locations
(in contrast to PCs), and and at flexible learning times
(in contrast to classrooms). Smartphones, that are be-
coming the more widespread mobile platforms, are
introducing another interesting factor, the application
market, which is the most effective way of software
distribution ever. Just anyone can publish his/her ap-
plication. From amongst millions of these applica-
tions, many of them are already oriented towards mo-
bile learning.

We are definitely not the first nor alone in re-
searching the usage of mobile applications for teach-
ing various topics regarding computer programming.
We have been directly encouraged by a recent pa-
per on teaching sorting algorithms using an Android-
based application (Boticki et al., 2012). It encour-
ages learning by location-independent usability and
by awarding students with points.

Many applications on mobile platforms resemble
Java applets and other web applications. This is be-
coming even more frequent as new ubiquitous web
technologies (e.g. HTML 5) can be directly used
to develop applications on mobile platforms. Let us
mention some existing web applications visualising
sorting algorithms.

The web site called Sorting Algorithm Animations
(Martin, 2012) provides an interesting comparison of
the algorithms’ efficiencies. The main properties and
very formal pseudo-codes are given for each algo-
rithm. Please, note that our goal is not the same, e.g.
we do not want to only provide a plain description or
comparison of different sorting algorithms.

Project JHAVÉ (Naps et al., 2012) includes dif-
ferent sorting algorithms. It is a client-server project
where each demonstration is implemented in a special
scripting language. In principle, the demonstrations
of each algorithm looks differently because they are
precisely created to explain each particular algorithm.

D. K. Nester set up a web page powered by
Javascript, that shows the pseudo-codes for various
sorting algorithms and enables the tracing of their ex-
ecutions (Nester, 2012). The outline of our work is
very similar but we have involved mobile platforms.

2 MOBILE FRAMEWORK FOR
DEMONSTRATING OF
SORTING ALGORITHMS

A computer program is given by its source code. As a
premise for a good design the code should be clear,
difficult statements should be accompanied by ex-
planatory comments. Moreover, graphical debuggers
allow for easy observation of every memory bit, and
the tracking of any program flow. However, design-
ing the algorithm is not the same as implementing and
testing it. Indeed, engineers do not learn computer al-
gorithms only to be able to write their straightforward
implementation — efficient implementations are al-
ready present in libraries. The goal of knowing var-
ious algorithms is to be capable of adapting and ex-
tending existing ones and to help in inventing com-
pletely new algorithms.

A purpose-built demonstration of an algorithm
may differ considerably from the debugger approach:

• Pseudo-code can be used instead of a real pro-
gramming language;

• Actions can be explained in advance;

• Explanations can be beyond simple comments;

• Additional functionality can be added such as an
examination mode for testing the user’s knowl-
edge.
A wide-selection of mobile platforms already

exists, and this technology is still expanding very
quickly. Smartphones, handhelds, gaming consoles,
tablets, and ultrabooks, all of them are mobile in the
sense of portability. Developing applications that can
be used on different platforms is often extremely dif-
ficult (Holzinger et al., 2012). In order to address at
least a part of this problem we were interested in a
rather minimal GUI, and set only a few expectations:
• A display with a least 800x480 points;

• A touchscreen display recognising click, click-
and-hold, and drag;

• A sensor for detecting screen orientation;

• A virtual keyboard on demand.
We found a helpful review of a mobile interface

design in (Mirkovic et al., 2011). Based on the feed-
back from users, they suggested that:
• All description texts that do not give extra knowl-

edge should be omitted;

• The right colours and text sizes are very important
for increasing readability and clarity;

• The usage of icons and images should be highly
limited;

• Concepts from web applications helps users to
transfer known user experience to the mobile ap-
plication, but text input and menu organisation
should resemble standard mobile functionalities.

There is a lot of information, numerical and graph-
ical, that we want to present to the user. However,
we cannot show it all in once because of the limited
screen size and because this would be to demanding
for the user. Some possible solutions are:

• Let the device show different data in the portrait
and landscape modes;

• Use pop-ups to show detailed data about items;

• Implement different screens which can be navi-
gated by using tabs or swipe gestures;

• Use a hierarchical presentation where different
groups and/or subgroups of data can be shown
(expanded) or hidden (collapsed).

We have decided to take advantage of orientation
detection. The portrait view is an obvious choice to
show source code. Thus, we give the largest part of
the screen to that component. However, without ob-
serving data changes the user will not benefit much
from watching the run of a source code. Thus we also
show the table of elements as small as possible but
readable. Before an algorithm is chosen, the area re-
served for the source code is used to show statistics.

The landscape view serves for those presentations
and interactions not realised on the portrait view. Al-
most all the area is occupied by a table of elements.
Large elements make the user’s interaction with them
easier. We have added a one-line comment about the
algorithm’s next action. This allows for tracking the
algorithm even without seeing it completely.

3 TRACKING THE EXECUTION
OF SORTING ALGORITHMS

The goal was the tracking of sorting algorithms by us-
ing a set of given visual effects whilst taking into ac-
count the limitations of the target platform. Different
algorithms require different approaches.

The initial decision went to the pseudo-code style
used for the presentation of the algorithms. Since we
aimed at the usage within a basic computer science
course, the obvious choice was a procedural pseudo-
code form. Hence, the sorting algorithms are com-
posed of sentences that are either assignments, de-
cisions, or flow control statements. As well as the
syntax, we also paid careful attention to the presen-
tation of the semantics. The inclusion of compound
and otherwise complicated sentences is undesirable.

The flow control by using the for loop is a typical
example of complex statement which is composed of
an initial assignment, a condition to stop, and control
actions applied at the end of every looping. Thus, we
preferred while loops within the presentation.

In order to avoid an inconsistent handling of dif-
ferent semantic parts, we identify a set of atomic op-
erations that reveal the concept of sorting algorithms.
Atomic operations are those that will be emphasised
on the screen, either simply by showing/changing
some value or applying some graphical effect, e.g.
highlighting part of the screen or doing some anima-
tion. Moreover, the atomic operations formed sepa-
rate steps during step-by-step tracing. To some extent,
the atomic operations correspond to the pseudo-code
statements, but we would have lost all the flexibil-
ity by equating these two formalisms. The following
atomic operations are necessary and sufficient:

• Changing the value of a variable;

• Starting/continuing/finishing a loop;

• Reading the value of an element;

• Comparing the value of one element with the
value of another one or with some stored value;

• Swapping two elements;

• Moving elements.

We were interested in the basic form of sorting al-
gorithms where the elements to be sorted were stored
in the table and no fancy optimisations were used.
We considered swapping and moving elements to be
atomic operations. They were autonomous principles
usually taught along the sorting algorithms.

3.1 Gnome Sort

Gnome Sort is advertised as the technique used by the
standard Dutch garden gnome to sort a line of flower
pots (Grune, 2012). Gnome Sort is supposed to be
the simplest sorting algorithm and, indeed, it is very
easy to demonstrate it. Our implementation of the al-
gorithm is shown in Figure 1. Only the bold lines
are shown to the user of the mobile application. The
shown lines are slightly modified (to reduce the text
width and also to make it more appealing for devel-
opers using different programming languages).

The index used by the algorithm (yes, Gnome Sort
uses only one index) is for brevity denoted by variable
i in the pseudo-code. We use function setMark()
to mark the element on the index i and function
setSpecial() to denote the elements that are already
in order. We use function CC() to enable step-by-step
tracing and to describe the current/next step.

3.2 Insertion Sort

Insertion Sort is a simple sorting algorithm that builds
the final sorted array one item at a time. It is much
less efficient on large arrays than more advanced al-
gorithms, but for small arrays it can even outperform
them. Moreover, insertion sort handles nearly sorted
arrays quite efficiently. When humans manually sort
something (e.g. a deck of playing cards), most of
them use a method similar to Insertion Sort.

In our implementation of Insertion Sort (Figure 2)
we use mark-up function setMark() to denote ele-
ments with indices i and j, that are currently being
compared, and function setSpecial() to mark the
already sorted elements. Please, note that we omit-
ted the details of moving the elements. Moreover, to
find a proper place for a current element we do not as-
sume the moving of each individual element. We only
perform the necessary comparisons and subsequently
move a whole block of elements at once. Whilst such
an approach is not used in most practical implemen-
tations of Insertion Sort (at least not in those sorting
a table of elements), this divergence neither change
the main idea of the algorithm nor causes troubles or
misunderstandings.

3.3 Quicksort

Quicksort is a divide-and-conquer algorithm which
first divides elements into two subgroups and then re-
cursively sorts these subgroups. Many versions ex-
ist of the original algorithm, which are either called a
simple version or an in-place version. In our project
we choose one of the in-place versions (Figure 3), i.e.
an algorithm which does not need an extra space for
dividing elements into two subgroups. Moreover, we
used a recursive version of the algorithm, which is
also the most common. The presented variant is not
the original version of the algorithm (Khreisat, 2007)
but in our opinion it is the most appropriate one for
the use in the class.

At the beginning of each recursion pass, the in-
dices of lower and upper elements are stored into
variables left and right which are then increased
and decreased, respectively. Each recursion pass ends
when index left becomes greater or equal to index
right. Please, note that we omitted details for func-
tion calculatePivot() to make the code shorter.
In the prototype application we used the median of
the first, middle and last elements. For the sake of
simplicity, the given implementation detects the final
condition at the beginning of each recursive call (we
could make this decision at the end, just before each
recursive call).

gnomeSort(table T, int n) {
·· int i, prev=-1;
·· setLabel("read",0);
·· setLabel("write",0);
·· setLabel("sourceLine",1);
··i = 0;
·· setLabel("i",0);
·· setMark(0);
·· CC("Position starts at 0");
··while (i < count) {
···· if (prev != -1) {
······ setLabel("sourceLine",3);
······ setLabel("i",i);
······ clearMark(prev);
······ setMark(i);
···· }
···· prev = i;
···· CC("Position now at i");
····if (i == 0 || T[i] >= T[i-1]) {
······ setLabel("sourceLine",4);
······ if (i == 0) {
········ CC("Increment position (i==0)");

······ } else {
········ incrLabel("read",2);
········ CC("Increment position ([i]>=[i-1])");
······ }
······ setSpecial(i);
······i++;
···· } else {
······ setLabel("sourceLine",6);
······ CC("Swap elements [i] and [i-1]");
······ clearMark(i);
······swap(i,i-1);
······ incrLabel("write",2);
······ setLabel("sourceLine",7);
······ CC("Decrement position");
······i--;
···· }
·· }
·· setLabel("sourceLine",9);
·· setLabel("i",i);
·· clearMark(i-1);
·· CC("Algorithm finished");
}

Figure 1: Implementation of Gnome Sort algorithm.

insertionSort(table T, int n) {
·· int i, j, key;
·· setLabel("i",-1);
·· setLabel("j",-1);
·· setLabel("key",-1);
·· setLabel("read",0);
·· setLabel("write",0);
·· setLabel("sourceLine",1);
·· setSpecial(0);
·· CC("Skip first element");
··i = 1;
··while (i < n) {
···· setLabel("sourceLine",2);
···· setLabel("i",i);
···· setMark(i);
···· CC("Outer loop now at i");
····key = T[i];
···· incrLabel("read",1);
···· setLabel("key",key);
···· setLabel("sourceLine",4);
···· CC("[i] stored into variable key");
····j = i - 1;
···· if (j >= 0) {
······ setLabel("sourceLine",5);
······ setLabel("j",j);
······ setMark(j);
······ CC("Inner loop starts at j=i-1");
······while (j >= 0 && T[j] > key) {
········ incrLabel("read",1);
········ setLabel("sourceLine",6);
········ CC("Decrement j ([j]>key)");
········ clearMark(j);

········j--;
········ setLabel("j",j);
········ if (j >= 0) setMark(j);
······ }
···· }
···· setSourceLine(7);
···· if (j >= 0) {
······ incrLabel("read",1);
······ CC("Stop inner loop ([j]<=key)");
······ clearMark(j);
···· } else {
······ CC("Stop inner loop (j<0)");
···· }
····if (j != i-1) {
······ setLabel("sourceLine",8);
······ CC("Move [i] to index j+1");
······ clearMark(i);
······move(i,j+1);
······ incrLabel("write",i-j);
···· }
···· if (j == i-1) clearMark(i);
···· setSpecial(j+1);
···· setLabel("sourceLine",9);
···· if (j >= 0) setLabel("j",-1);
···· CC("Increment i");
····i++;
···· setLabel("key",-1);
·· }
·· setLabel("sourceLine",11);
·· setLabel("i",i);
·· CC("Algorithm finished");
}

Figure 2: Implementation of Insertion Sort algorithm.

quickSort(table T, int begin, int end) {
·· int left, right;
·· int pivot;
··left = begin;
··right = end;
··if (left < right) {
···· setLabel("sourceLine",3);
···· setLabel("left",left);
···· setLabel("right",right);
···· setLabel("pivot",-1);
···· setSpecial(left,right);
···· CC("Sort elements from left to right");
···· setLabel("sourceLine",4);
···· CC("Calculate pivot");
····pivot = calculatePivot(left,right);
···· incrLabel("read",3);
···· setLabel("pivot",pivot);
···· setLabel("sourceLine",5);
···· CC("Start partitioning");
····while (left <= right) {
······ setLabel("sourceLine",6);
······ CC("Search forward from left");
······ setMark(left);
······while (T[left] < pivot) {
········ incrLabel("read",1);
········ CC("Element less than pivot");
········ clearMark(left);
········ clearSpecial(left);
········left++;
········ setLabel("left",left);
········ setMark(left);
······ }
······ incrLabel("read",1);
······ CC("Element not less than pivot");
······ setLabel("sourceLine",7);
······ CC("Search backward from right");
······ setMark(right);
······ clearSpecial(right);
······while (T[right] > pivot) {

········ incrLabel("read",1);
········ CC("Element greater than pivot");
········ setSpecial(right);
········right--;
········ setLabel("right",right);
········ setMark(right);
········ clearSpecial(right);
······ }
······ incrLabel("read",1);
······ CC("Element not greater than pivot");
······ clearMark(right);
······if (left <= right) {
········ setLabel("sourceLine",9);
········ clearMark(left);
········ setSpecial(right);
········ CC("Swap elements [left] and [right]");
········swap(left,right);
········ incrLabel("write",2);
········ setMark(right);
········ clearSpecial(left);
········left++;
········right--;
········ setLabel("left",left);
········ setLabel("right",right);
······ }
···· }
···· setLabel("sourceLine",12);
···· CC("left greater than right");
···· setLabel("left",-1);
···· setLabel("right",-1);
···· setMark(begin,right);
···· CC("Elements sorted per pivot");
···· clearMark(begin,end);
···· clearSpecial(left,end);
····quickSort(begin,right);
····quickSort(left,end);
·· }
·· CC("Return from recursive call");
}

Figure 3: Implementation of Quicksort algorithm.

4 DISCUSSION AND
CONCLUSION

We have studied sorting algorithms with the goal
of their demonstration on mobile platforms. There
are many aspects to such work, e.g. choosing the
proper presentation of the pseudo-code and choosing
the proper type and amount of visual effects. Because
we successfully managed three very different algo-
rithms, we believe that our approach can be smoothly
extended to the most of other sorting algorithms as
well. Indeed, we do have some scruples about using
the same framework for demonstrating various sort-
ing algorithms. It could, however, be acceptable to

sacrifice some flexibility for uniformity because we
obtained a more direct comparison between different
solutions. All in all, the shared platforms for demon-
strating the problems and solutions are quite common
in computer science teaching books.

When considering the practical part of the project,
the main results were the implementations of sorting
algorithms. When they are observed more closely, it
is noticeable that each statement either belongs to the
sorting algorithm, or collects statistical data, or serves
as a part of the demonstration strategy. We were very
careful not to mix these roles. Hence, the obtained
C-style code is portable and not bound to any specific
graphical API. Furthermore, we can obtain statistical
data by only excluding all GUI statements.

The presented implementations were tested in a
prototype application on Nokia N9. This smartphone
uses Meego OS (based on Linux kernel) and allows
native applications in C++. Figures 4 and 5 give some
screenshots from the prototype application. In any
case, the goal of the project was to research the prob-
lems in such a general way that the implementation
on any mobile platform could benefit from it.

Figure 4: Prototype application running on Nokia N9.

Figure 5: Prototype application in landscape mode.

Although not being the main goal of this project,
we found it very usable when teaching software
project management. Today, students often underesti-
mate the benefit of appropriate planning (e.g. prepa-
ration of graphical views) and testing (e.g. prepa-
ration of test cases). The presented project requires
detailed planning of graphical representation because
of the limited screen sizes on mobile devices, and
because the effective demonstration of sorting algo-
rithms involves several navigation commands (run,
pause, stop, one step, reset, etc.), so testing the ob-
tained application is quite a challenge.

Although, at least Quicksort algorithm is not triv-
ial, sorting is not a real challenge for most of the stu-
dents. This is not the case with all subjects. For ex-
ample, when considering search trees, e.g. AVL trees,
2-3 trees, and red-black trees; have you ever been able

to manage them? Every group of algorithms needs a
special framework and more complex and longer al-
gorithms are quite problematic for demonstrating on
mobile platforms. Fortunately, mobile devices are be-
coming bigger and more powerful, capable of pre-
senting more text and graphics, fancier animations,
and effects. Also, many diverse controls are appear-
ing (gestures, 3D accelerometers, voice commands).
Hence, we all have a lot of further work.

REFERENCES

Boticki, I., Barisic, A., Martin, S., and Drljevic, N. (2012).
Teaching and learning computer science sorting algo-
rithms with mobile devices: A case study. Computer
Applications in Engineering Education.

Grune, D. (2012). Gnome sort - the simplest sort algo-
rithm. Retrieved December 14, 2012, from http://
dickgrune.com/Programs/gnomesort.html.

Holzinger, A., Treitler, P., and Slany, W. (2012). Making
apps useable on multiple different mobile platforms:
On interoperability for business application develop-
ment on smartphones. In Multidisciplinary Research
and Practice for Information Systems, volume 7465 of
Lecture Notes in Computer Science, pages 176–189.

Khreisat, L. (2007). Quicksort — a historical perspective
and empirical study. International Journal of Com-
puter Science and Network Security, 7(12):54–65.

Knuth, D. E. (1998). The Art of Computer Programming,
volume 3: Sorting and Searching. Addison-Wesley
Professional, 2 edition.

Martin, D. R. (2012). Sorting algorithm anima-
tions. Retrieved December 14, 2012, from
http://www.sorting-algorithms.com/.

Mirkovic, J., Bryhni, H., and Ruland, C. M. (2011). De-
signing user friendly mobile application to assist can-
cer patients in illness management. In The Third In-
ternational Conference on eHealth, Telemedicine, and
Social Medicine, pages 64–71.

Naps, T., Furcy, D., Grissom, S., and McNally, M.
(2012). Java-hosted algorithm visualization envi-
ronment. Retrieved December 14, 2012, from
http://jhave.org/.

Nester, D. K. (2012). Sorting demonstrations. Retrieved
December 14, 2012, from http://www.bluffton.
edu/∼nesterd/java/SortingDemo.html.

Rosetta Code (2012). Sorting algorithms. Retrieved De-
cember 14, 2012, from http://rosettacode.org/
wiki/Category:Sorting_Algorithms.

Skiena, S. S. (2008). The Algorithm Design Manual.
Springer, 2 edition.

Vitanyi, P. (2007). Analysis of sorting algorithms by kol-
mogorov complexity (a survey). Entropy, Search,
Complexity, pages 209–232.

Wikipedia (2012). Sorting algorithm. Retrieved De-
cember 14, 2012, from http://en.wikipedia.org/
wiki/Sorting_algorithm.

APPENDIX

Figure 6: The outline of portrait view.

Figure 7: The outline of landscape view.

0: gnomeSort(n) {
1: i = 0
2: while (i < n) {
3: if (i == 0 || [i] >= [i-1]) {
4: i++
5: } else {
6: swap [i] and [i-1]
7: i--
8: }
9: }
10: }

Figure 8: Gnome Sort algorithm as shown to the user.

0: insertionSort(n) {
1: i = 1
2: while (i < n) {
3: key = [i]
4: j = i-1
5: while (j >= 0 && [j] > key) {
6: j--
7: }
8: if (j != i-1) move [i] to [j+1]
9: i++
10: }
11: }

Figure 9: Insertion Sort algorithm as shown to the user.

0: quickSort(begin, end) {
1: left = begin
2: right = end
3: if (left < right) {
4: calculate pivot
5: while (left <= right) {
6: while ([left] < pivot) left++
7: while ([right] > pivot) right--
8: if (left <= right) {
9: swap [left] and [right]
10: left++
11: right--
12: }
13: }
14: quickSort(begin,right)
15: quickSort(left,end)
16: }
17: }

Figure 10: Quicksort algorithm as shown to the user.

3 2 5 1 4 01 – Position starts at 0

3 2 5 1 4 04 – Increment position (i==0)

3 2 5 1 4 03 – Position now at 1

3 2 5 1 4 06 – Swap elements [i] and [i-1]

2 3 5 1 4 07 – Decrement position

2 3 5 1 4 03 – Position now at 0

2 3 5 1 4 04 – Increment position (i==0)

2 3 5 1 4 03 – Position now at 1

2 3 5 1 4 04 – Increment position ([i]>=[i-1])

2 3 5 1 4 03 – Position now at 2

2 3 5 1 4 04 – Increment position ([i]>=[i-1])

2 3 5 1 4 03 – Position now at 3

2 3 5 1 4 06 – Swap elements [i] and [i-1]

2 3 1 5 4 07 – Decrement position

2 3 1 5 4 03 – Position now at 2

2 3 1 5 4 06 – Swap elements [i] and [i-1]

2 1 3 5 4 07 – Decrement position

2 1 3 5 4 03 – Position now at 1

2 1 3 5 4 06 – Swap elements [i] and [i-1]

1 2 3 5 4 07 – Decrement position

1 2 3 5 4 03 – Position now at 0

1 2 3 5 4 04 – Increment position (i==0)

1 2 3 5 4 03 – Position now at 1

1 2 3 5 4 04 – Increment position ([i]>=[i-1])

1 2 3 5 4 03 – Position now at 2

1 2 3 5 4 04 – Increment position ([i]>=[i-1])

1 2 3 5 4 03 – Position now at 3

1 2 3 5 4 04 – Increment position ([i]>=[i-1])

1 2 3 5 4 03 – Position now at 4

1 2 3 5 4 06 – Swap elements [i] and [i-1]

1 2 3 4 5 07 – Decrement position

1 2 3 4 5 03 – Position now at 3

1 2 3 4 5 04 – Increment position ([i]>=[i-1])

1 2 3 4 5 03 – Position now at 4

1 2 3 4 5 04 – Increment position ([i]>=[i-1])

1 2 3 4 5 09 – Algorithm finished

Figure 11: Demonstration of Gnome Sort

3 2 5 1 4 01 – Skip first element

3 2 5 1 4 02 – Outer loop starts at 1

3 2 5 1 4 04 – [i] stored into variable key

3 2 5 1 4 05 – Inner loop starts at 0

3 2 5 1 4 06 – Decrement j ([j]>key)

3 2 5 1 4 07 – Stop inner loop (j<0)

3 2 5 1 4 08 – Move [i] to index 0

2 3 5 1 4 09 – Increment i

2 3 5 1 4 02 – Outer loop now at 2

2 3 5 1 4 04 – [i] stored into variable key

2 3 5 1 4 05 – Inner loop starts at 1

2 3 5 1 4 07 – Stop inner loop ([j]<=key)

2 3 5 1 4 09 – Increment i

2 3 5 1 4 02 – Outer loop now at 3

2 3 5 1 4 04 – [i] stored into variable key

2 3 5 1 4 05 – Inner loop starts at 2

2 3 5 1 4 06 – Decrement j ([j]>key)

2 3 5 1 4 06 – Decrement j ([j]>key)

2 3 5 1 4 06 – Decrement j ([j]>key)

2 3 5 1 4 07 – Stop inner loop (j<0)

2 3 5 1 4 08 – Move [i] to index 0

1 2 3 5 4 09 – Increment i

1 2 3 5 4 02 – Outer loop now at 4

1 2 3 5 4 04 – [i] stored into variable key

1 2 3 5 4 05 – Inner loop starts at 3

1 2 3 5 4 06 – Decrement j ([j]>key)

1 2 3 5 4 07 – Stop inner loop ([j]<=key)

1 2 3 5 4 08 – Move [i] to index 3

1 2 3 4 5 09 – Increment i

1 2 3 4 5 11 – Algorithm finished

Figure 12: Demonstration of Insertion Sort.

2 6 1 5 3 4 8 7 line = 03, left = 0, right = 7, pivot = -1 — Sort elements from 0 to 7

2 6 1 5 3 4 8 7 line = 04, left = 0, right = 7, pivot = -1 — Calculate pivot

2 6 1 5 3 4 8 7 line = 05, left = 0, right = 7, pivot = 5 — Start partitioning

2 6 1 5 3 4 8 7 line = 06, left = 0, right = 7, pivot = 5 — Search forward from left

2 6 1 5 3 4 8 7 line = 06, left = 0, right = 7, pivot = 5 — Element less than pivot

2 6 1 5 3 4 8 7 line = 06, left = 1, right = 7, pivot = 5 — Element not less than pivot

2 6 1 5 3 4 8 7 line = 07, left = 1, right = 7, pivot = 5 — Search backward from right

2 6 1 5 3 4 8 7 line = 07, left = 1, right = 7, pivot = 5 — Element greater than pivot

2 6 1 5 3 4 8 7 line = 07, left = 1, right = 6, pivot = 5 — Element greater than pivot

2 6 1 5 3 4 8 7 line = 07, left = 1, right = 5, pivot = 5 — Element not greater than pivot

2 6 1 5 3 4 8 7 line = 09, left = 1, right = 5, pivot = 5 — Swap elements [left] and [right]

2 4 1 5 3 6 8 7 line = 06, left = 2, right = 4, pivot = 5 — Search forward from left

2 4 1 5 3 6 8 7 line = 06, left = 2, right = 4, pivot = 5 — Element less than pivot

2 4 1 5 3 6 8 7 line = 06, left = 3, right = 4, pivot = 5 — Element not less than pivot

2 4 1 5 3 6 8 7 line = 07, left = 3, right = 4, pivot = 5 — Search backward from right

2 4 1 5 3 6 8 7 line = 07, left = 3, right = 4, pivot = 5 — Element not greater than pivot

2 4 1 5 3 6 8 7 line = 09, left = 3, right = 4, pivot = 5 — Swap elements [left] and [right]

2 4 1 3 5 6 8 7 line = 12, left = 4, right = 3, pivot = 5 — Index left greater than right

2 4 1 3 5 6 8 7 line = 12, left = -1, right = -1, pivot = 5 — Elements sorted per pivot

2 4 1 3 5 6 8 7 line = 03, left = 0, right = 3, pivot = -1 — Sort elements from 0 to 3

2 4 1 3 5 6 8 7 line = 04, left = 0, right = 3, pivot = -1 — Calculate pivot

2 4 1 3 5 6 8 7 line = 05, left = 0, right = 3, pivot = 3 — Start partitioning

2 4 1 3 5 6 8 7 line = 06, left = 0, right = 3, pivot = 3 — Search forward from left

2 4 1 3 5 6 8 7 line = 06, left = 0, right = 3, pivot = 3 — Element less than pivot

2 4 1 3 5 6 8 7 line = 06, left = 1, right = 3, pivot = 3 — Element not less than pivot

Figure 13: A part of Quicksort demonstration (pivot is the median of the first, middle and last elements).

