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Abstract—This paper is about Bakery algor ithm for  mutual ex-
clusion. Three var iants of the algor ithm for  two processes are 
discussed, formally modelled with a simple process algebra and 
then ver ified. Two methods of ver ification are given. In the first 
one, the processes representing behaviour  of the algor ithms are 
minimised with regard to testing equivalence and then examined. 
In the second approach, the properties are expressed with tem-
poral logic ACTL and then ver ified using a model checker. Be-
cause we bounded the possible values of var iables, the paper 
contibutes new results and knowledge to the well-known facts 
about Bakery algor ithm.  
 

Index Terms – ACTL model checking, Bakery algor ithm, Mu-
tual exclusion, Testing equivalence 

I. INTRODUCTION 

AKERY algorithm for mutual exclusion is a simple and 
popular example of concurrent system discovered by L. 
Lamport in 1974 [1]. It does not depend upon any form 

of central control like semaphores. It implements mutual ex-
clusion for N processes without relying on any lower-level 
mutual exclusion and works correct even if read and write 
operations on the same word of memory overlap. The algo-
rithm for two processes can be easily derived from a more 
general algorithm for N processes. However, some authors 
have intentionally or inattentively simplified the original algo-
rithm. It turns out that these modification have significant 
impact on the properties of the algorithm. 

In Section 2 we describe Lamport’s Bakery algorithm for N 
processes. In Section 3, three variants of Bakery algorithm for 
two processes are given and discussed. In Section 4, these 
variants are modelled with a simple process algebra. The 
processes representing behaviour of the algorithms are mini-
mised with regard to testing equivalence and then examined. 
In Section 5, we present formal verification using ACTL 
model checking. The paper concludes with some remarks. 

II. DESCRIPTION OF BAKERY ALGORITHM 

Lamport’s Bakery algorithm for mutual exclusion given in 
Fig. 1 is designed for a system with N processes. Each of 
them includes a critical section which must not be executed 
concurrently with the critical sections of the other processes. 
A shared memory is used for access arbitration. The arbitra-
tion follows the principle of serving customers at a bakery, 
where the processes are the customers which can be served 

only one at a time. Each process receives a ticket number as 
the costumers in a store would, and the process with the low-
est number is allowed to enter the critical section. This is an 
infinite-state system since ticket numbers may grow arbitrarily 
large. When a process leaves its critical section, it gets ticket 
number 0, which indicates that the process is not interested in 
accessing the critical section. 
 
PROCESS Pi 
loop forever  
i0: <non-critical section> 
i1: Choosing(i) := 1; 
i2: Number(i) := 1 + max(Number[1],…,Number[N]); 
i3: Choosing(i) := 0; 

for  j in 1..N do begin 
i4:  loop 

exit  when Choosing(j) == 0; 
end loop; 

i5:  loop 
con:  exit  when Number(j) == 0 or  Number(i) < Number(j) or  

 (Number(i) == Number(j) and i < j); 
end loop; 

 end; 
i6: <critical section> 
i7: Number(i) := 0; 
end loop; 

 
Fig. 1: Bakery algorithm for one out of N processes 

 
By formal verification of Bakery algorithm, the following 

properties can be shown:  
• Mutual exclusion: at any time, only one process can be 

in its critical section. 
• Accessibility: if a process expresses interest in entering 

the critical section, it will eventually do so. 
• One-bounded overtaking: if process Pi intends to enter 

the critical section, any other process can enter the criti-
cal section at most once before Pi does. 

The Bakery algorithm was the first solution that satisfied all 
three properties above for the general case of N processes. 

III. BAKERY ALGORITHM VARIANTS FOR TWO PROCESSES 

Original variant of Bakery algorithm. From the general 
Bakery algorithm the algorithms for the case of two processes 
can be derived. Processes P1-BAKERY and P2-BAKERY 
use variables c1, c2, n1, and n2 instead of arrays Choosing 
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and Number. The algorithms for both processes are shown in 
Fig. 2 and they differ only in conditions con1 and con2.  

The working principle is the same as in the general Bakery 
algorithm. Suppose that both processes are in the non-critical 
section, n1=n2=0, and process P1-BAKERY wants to enter 
its critical section. It sets variable c1 to 1 and performs addi-
tion in line a2. It gets the ticket number with value 1. After-
wards, process P1-BAKERY enters its critical section as it 
has the lowest ticket number and condition con1 is true. 
However, process P2-BAKERY also wants to enter the criti-
cal section. The value n2 is set to 2, because value of n1 is 1. 
Thus process P2-BAKERY is being denied entering critical 
section because the condition con2 is false. It must wait in 
loop b4. After process P1-BAKERY leaves the critical sec-
tion, it sets n1=0. Process P2-BAKERY has now the lowest 
ticket number and can enter its critical section. 

 

Fig. 2: Bakery algorithm for two processes 
 

What happens if processes P1-BAKERY and P2-BAKERY 
want to enter their critical sections simultaneously? If both 
processes operate with the same speed, steps a2 and b2 are 
calculated  simultaneously resulting in value 1 for both vari-
ables n1 and n2. Both processes have the lowest (equal) ticket 
number. Due to different conditions for exit in loops a5 and 
b5, only the first process will enter its critical section. If con-
ditions con1 and con2 were the same, the system would either 
deny or allow both processes to enter its critical section.  

A simplified Bakery algorithm. In [2], M. Ben-Ari gives 
the variant of Bakery algorithm shown in Fig. 3. Variables c1 
and c2, which are important for assuring mutual exclusion, 
are removed and their role is compensated by variables n1 
and n2, respectively. Moreover, assignments a3 and b3 and 
loops a4 and b4 are removed. We will denote the processes 
implementing this variant of the algorithm by P1-BEN-ARI 
and  P2-BEN-ARI. 

An even more simplified Bakery algorithm. In [3], authors 
present an even more simplified variant of Bakery algorithm, 
where variables c1 and c2 are simply missing and not substi-
tuted by any mechanism. Processes implementing this variant 
of the algorithm, which do not contain lines a1 and b1, but 
are otherwise the same as shown in Fig. 3, will be denoted by 
P1-STEP and P2-STEP. 

Fig. 3: Simplified Bakery algorithm for two processes from [2] 

IV. REPRESENTING ALGORITHMS  WITH PROCESSES 

Process algebrae are widely used formalisms for modelling 
and verification of concurrent systems. Systems are described 
as a set of communicating processes. We will use an algebraic 
approach which is similar to CCS and has some notation from 
CSP. Processes are labelled directed graphs. Graph nodes are 
called states. An edge from state p to state q labelled with 
action �  is called an � -transition or shortly a transition from 
state p to state q. If there exists an � -transition from a given 
state, we say that in this state the process can perform � -
transition or that it can per form action � . The set of all ac-
tions which a process can perform is called the alphabet of 
the process. A sequence of transitions in the process is called 
a path. A state without outgoing transitions is a deadlocked 
state. The alphabet of a process includes a silent action � , 
which is used to model internal transitions. All actions oth-
ers than �  are called visible actions and are divided into input 
and output actions. The name of an output action terminates 
by '!', e.g. a!, b!,... The name of an input action terminates by 
'?', e.g. a?, b?,... The pairs of actions a? and a!, b? and b! etc. 
are called  complementary actions. 

Processes can run concurrently forming a compound sys-
tem. It is assumed that processes perform their transitions 
asynchronously. However, each process can perform a visible 
action only if one of the other processes in the system concur-
rently performs the complementary action. The only excep-
tions of this rule are special external actions used to interact 
with the system environment, which can be performed by a 
process independently of the other processes. 

An important concept in process algebrae is testing equiva-
lence [4]. An observer O is a process containing special ex-
ternal action w!, which denotes success of the observation. A 
concurrent run of process P and observer O is called an ob-
servation, and it is successful if the action w! is performed. 
Process P must satisfy the observer O if the observation is 
always successful. Process P may satisfy the observer O if  
the observation  may be successful. Two processes are must 
equivalent iff they must satisfy the same sets of observers. 
They are may equivalent iff they may satisfy the same sets of 
observers. Must equivalence does not imply may equivalence 
although for a particular observer, if a process must satisfy 
the observer, then also may satisfy it. Finally, the processes 
are testing equivalent iff they are must and may equivalent. 

PROCES P1-BAKERY 
loop forever  
a0: <non-critical section> 
a1: c1 := 1; 
a2: n1 := n2 + 1; 
a3: c1 := 0; 
a4: loop 
       exit  when c2==0; 
      end loop; 
a5: loop 
con1: exit  when n2==0 or  n1<=n2; 
      end loop; 
a6: <critical section> 
a7: n1 := 0; 
end loop; 
 

PROCES P2-BAKERY 
loop forever  
b0: <non-critical section> 
b1: c2 := 1; 
b2: n2 := n1 + 1; 
b3: c2 := 0; 
b4: loop 
       exit  when c1==0; 
      end loop; 
b5: loop 
con2: exit  when n1==0 or  n2<n1; 
      end loop; 
b6: <critical section> 
b7: n2 := 0; 
end loop; 

PROCES P1-BEN-ARI 
loop forever  
a0: <non-critical section> 
a1: n1 := 1; 
a2: n1 := n2 + 1; 
a5: loop 
con1: exit  when n2==0 or  n1<=n2; 
      end loop; 
a6: <critical section> 
a7: n1 := 0; 
end loop; 
 

PROCES P2-BEN-ARI 
loop forever  
b0: <non-critical section> 
b1: n2 := 1: 
b2: n2 := n1 + 1; 
b5: loop 
con2: exit  when n1==0 or  n2<n1; 
      end loop; 
b6: <critical section> 
b7: n2 := 0; 
end loop; 
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Processes representing variables. Variables n1, n2, c1, 
and c2 are represented with processes composed of states, 
such that each state represents one possible value of the vari-
able. Variables c1 and c2 can only have value 0 or 1, whereas 
variables n1 and n2 may have value 0, 1, or 2. In Fig. 4, proc-
ess N1 is given in textual form, which is used on a computer. 
There, an � -transition from state p to q is denoted by 
p = � .q. Processes representing other variables are similar. 

 
N10 = n1r0!.N10 + n1w0?.N10 + n1w1?.N11 + n1w2?.N12 
N11 = n1r1!.N11 + n1w0?.N10 + n1w1?.N11 + n1w2?.N12 
N12 = n1r2!.N12 + n1w0?.N10 + n1w1?.N11 + n1w2?.N12 

 
Fig. 4: Process N1 representing variable n1 

 
Processes for addition. Addition is implemented as a con-

ditional value setting. We used two different solutions. In the 
first case, process NPLUS performs both additions. In the 
second solution, there are two separate processes, N1PLUS 
and N2PLUS, for the calculation of n1 and n2, respectively. 
The main difference between these solutions is that in the last 
case concurrent operation on both variables is possible. Proc-
esses for addition are shown in Fig. 5 and 6. 
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Fig. 5: Process NPLUS 
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Fig. 6: Processes N1PLUS and N2PLUS 

 
Processes P1-BAKERY and P2-BAKERY. These processes 
represent the Bakery algorithm. They are shown in Fig. 7. 
The processes are different because of different conditions 
con1 and con2. In the model, conditions are optimised as the 
values for n1 and n2 are bounded. Actions n1plus! and 
n2plus! launch the addition and it is not determined, if the 
implementation with one or two processes will be used. 
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Fig. 7: Processes P1-BAKERY and P2-BAKERY 

 
 
Processes P1-BEN-ARI , P2-BEN-ARI , P1-STEP, and 

P2-STEP. These processes are similar to those representing 
original Bakery algorithm. Processes P1-BEN-ARI and P2-
BEN-ARI are presented in Fig. 8. Processes P1-STEP and 
P2-STEP are almost the same, but their initial states are P11 
and P21, respectively, and they also return into these states. 
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Fig. 8: Processes P1-BEN-ARI and P2-BEN-ARI 
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To obtain the behaviour of each variant of Bakery algo-
rithm, separate components are composed in parallel, and the 
behaviour of the whole system is then represented with a sin-
gle process. In this way, we create processes BAKERY, 
BEN-ARI, STEP, which represent the systems using process 
NPLUS, and processes BAKERY2, BEN-ARI2, and STEP2, 
which represent the systems where processes N1PLUS and 
N2PLUS are used. The obtained processes are large and are 
not directly usable for reasoning about the algorithms (see 
Table 1). One solution to this problem is to create smaller, but 
testing equivalent processes. They contain all externally ob-
servable properties and are shown in Fig. 9, 10, 11, and 12. It 
turns out that processes BAKERY and BAKERY2 are testing 
equivalent and therefore process TEST-BAKERY adequately 
represents both systems. The same situation is with processes 
BEN-ARI and BEN-ARI2. 

TABLE 1: THE SIZE OF PROCESSES REPRESENTING ALGORITHMS 

Process State
s 

Transitions 

BAKERY 218 381 (52 visible +329 internal) 

BAKERY2 292 521 (60 visible +461 internal) 

BEN-ARI 148 256 (44 visible +212 internal) 

BEN-ARI2 214 383 (52 visible +331 internal) 

STEP 112 191 (36 visible +155 internal) 

STEP2 242 451 (108 visible +343 internal) 

 
From the obtained processes, interesting conclusions can 

be carried out. The algorithms behave differently. All the sys-
tems except STEP2 are may equivalent but they are not must 
equivalent. For example, an observer able to perform se-
quences enter1?, w! and enter2?, w! must satisfy processes 
BAKERY and STEP, but not process BEN-ARI. By analys-
ing the processes, we can also try to answer the questions 
about mutual exclusion, accessibility, and one-bounded over-
taking. 

Mutual exclusion: We can easily conclude that all the sys-
tems except STEP2 assure mutual exclusion. 

Accessibility: Only STEP and STEP2 assure accessibility, 
because the other systems contain deadlocked state. This hap-
pens because variables n1 and n2 are bounded in our model. 

One-bounded overtaking: The validity of this property can-
not be established by analysing the minimised processes. 
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S3 S4

TAU TAU
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Fig. 9: Process TEST-BAKERY 
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Fig. 10: Process TEST-BEN-ARI 
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Fig. 11: Process  TEST-STEP 
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Fig. 12: Process TEST-STEP2 
 

V. MODEL CHECKING WITH ACTL 

We will specify circuit properties using action computa-
tion tree logic (ACTL), which is a propositional branching 
time temporal logic. We will use a variant of ACTL with 
unless operator [5]. 

ACTL formulae are composed of constants true and false, 
standard Boolean operators NOT, AND, OR, action formulae 
written in brackets, path quantifiers E (“ there exists a path” ) 
and A (“ for all paths” ), and temporal operators U (“until” ), 
W (“unless” ), X (“ for the next transition” ), F (“ for some tran-
sition in the future” ), and G (“ for all transitions in the fu-
ture” ). Action formulae may contain visible actions, silent 
action � , and standard Boolean operators. ACTL formulae are 
evaluated in states. A state where ACTL formula �  is valid 
will be called � -state. An action for which action formula �  is 
valid will be called � -action. A transition from state p to state 
q where action formula �  is valid  for the action performed 
during this transition and ACTL formula �  is valid in state q 
will be called ( �  , � )-transition. The meaning of temporal op-
erators is given as follows: 
• Formula X{ � }  �  is valid on path �  iff the first transition 

on this path is a ( �  , � )-transition. 
• Formula F{ � }  �  is valid on path �  iff there exists a 

( �  , � )-transition on this path.  
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• Formula G �  { � } is valid on path �  iff ACTL formula �  is 
valid in the first state of this path and all transitions on 
the path are ( �  , � )-transitions. 

• Formula [ �  { � } U{ � ’ }  � ’ ] is valid on path �  iff ACTL 
formula �  is valid in the first state of this path and the 
path begins with a finite sequence of ( �  , � )-transitions 
followed by a ( � ’  , � ’ )-transition. 

• Formula [ �  { � } W{ � ’ }  � ’ ] is valid on path �  iff formula 
[ �  { � }U{ � ’ }  � ’ ] is valid on this path or formula 
G �  { � }  is valid on this path. 

The listed formulae are called path formulae. Each path 
formula must be immediately preceded by a path quantifier. 
Path quantifier E requires that the property expressed by the 
path formula is valid for at least one path starting in the given 
state. Path quantifier A requires that the property expressed 
by the path formula is valid for all paths starting in the given 
state. In a deadlocked state, formulae EG �  { � } , AG �  { � } , 
E[ �  { � } W{ � ’ }  � ’ ], and A[ �  { � } W{ � ’ }  � ’ ] are valid only if 
the state is a �  -state. Formulae EX{ � }  � , AX{ � }  � , EF{ � }  � , 
AF{ � }  � , E[ �  { � } U{ � ’ }  � ’ ], and A[ �  { � } U{ � ’ }  � ’ ] are inva-
lid in all deadlocked states. We will take that an ACTL for-
mula is valid in process P iff it is valid in its initial state. 

In ACTL formulae, we will omit the constant true in some 
cases, for example: AG �  = AG �  { true}  and E[{ � }  U { � ’ } ] 
= E[true { � } U{  � ’ }  true]. We also use commonly used  ab-
breviation [ � ] � . ACTL formula [ � ] �  is valid in the given 
state iff all � -transitions from that state are ( �  , � )-transitions. 
To enable the verification of interesting properties, we intro-
duced external actions request1! and request2! in processes 
P1 and P2, respectively. We added a transition with this ac-
tion right after the addition completes. Then, we express mu-
tual exclusion, accessibility, and one-bounded overtaking 
with the following ACTL formulae: 

1. There is no deadlock state:  
AG AF { true}  

2. If process P1 (P2) enters its critical section, then process 
P2 (P1) cannot enter its critical section until P1 exits:  
AG [enter1!] A[{ NOT enter2!}  U { exit1!} ]  
AG [enter2!] A[{ NOT enter1!}  U { exit2!} ] 

3. If  process P1 (P2) expresses interest in entering its critical 
section, it will eventually do so:  
AG [request1!] AF { enter1!}   
AG [request2!] AF { enter2!}  

4. After process P1 (P2) intends to enter its critical section, 
process P2 (P1) can enter its critical section at most once 
before P1 (P2) does.  
AG [request1!] NOT E[{ NOT enter1!}  U { enter2!}   
   E[{ NOT enter1!}  U { enter2!} ]]  
AG [request2!] NOT E[{ NOT enter2!}  U { enter1!}   
   E[{ NOT enter2!}  U { enter1!} ]] 

The results of model checking were in accordance with our 
expectations after the analysis of testing equivalent processes. 
Systems STEP and STEP2 do not have deadlocked states, 
while the others have one. All the systems except STEP2 as-
sure mutual exclusion and only STEP and STEP2 assure ac-
cessibility. As a bonus, we also found out that all the systems 
have the property of one-bounded overtaking. 

Model checking turns out to be very elegant, flexible and 
powerful verification method. An additional advantage are 
useful counterexamples. For example, the following two ex-
plain, how system BENARI can reach deadlocked state and 
why system STEP2 does not assure mutual exclusion. 

AG AF { true}  ==> FALSE 
(P10<P1BENARI>,P20<P2BENARI>,N10<N1>,N20<N2>,PLUS<NPLUS>)  �  �  �  
(P10<P1BENARI>,P21<P2BENARI>),N10<N1>,N21<N2>,PLUS<NPLUS>)  �  �  �  
(P10<P1BENARI>),P22<P2BENARI>,N10<N1>,N21<N2>,PL21<NPLUS>)  �  �  �  
(P11<P1BENARI>,P22<P2BENARI>,N11<N1>,N21<N2>,PL21<NPLUS>)  �  �  �  
(P11<P1BENARI>,P22<P2BENARI>,N11<N1>,N21<N2>,PL23<NPLUS>)  �  �  �  
(P11<P1BENARI>,P22<P2BENARI>,N11<N1>,N22<N2>,PLOK2<NPLUS>)  �  �  �  
(P11<P1BENARI>,P220<P2BENARI>,N11<N1>,N22<N2>,PLUS<NPLUS>)  �  �  �  
(P12<P1BENARI>,P220<P2BENARI>,N11<N1>,N22<N2>,PL11<NPLUS>)  �  request2! 

�  
(P12<P1BENARI>),P23<P2BENARI>,N11<N1>,N22<N2>,PL11<NPLUS>)  �  �  �  
(P12<P1BENARI>,P232<P2BENARI>,N11<N1>,N22<N2>,PL11<NPLUS>) . 

AG [enter1!] A[{ NOT enter2!}  U { exit1!} ] ==> FALSE 
(P11<P1STEP>,P21<P2STEP>,N10<N1>,N20<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) �  �  �  
(P11<P1STEP>,P22<P2STEP>,N10<N1>,N20<Y2>,PLUS<N1PLUS>,PL21<N2PLUS>) �  �  �  
(P11<P1STEP>,P22<P2STEP>,N10<N1>,N20<N2>,PLUS<N1PLUS>,PL22<N2PLUS>) �  �  �  
(P12<P1STEP>,P22<P2STEP>,N10<N1>,N20<N2>,PL11<N1PLUS>,PL22<N2PLUS>) �  �  �  
(P12<P1STEP>,P22<P2STEP>,N10<N1>,N20<N2>,PL12<N1PLUS>,PL22<N2PLUS>) �  �  �  
P12<P1STEP>,P22<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLOK2<N2PLUS>) �  �  �  
P12<P1STEP>,P220<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS>) �  request2! �  
(P12<P1STEP>,P23<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS>) �  �  �  
(P12<P1STEP>,P231<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS> �  �  �  
(P12<P1STEP>,P24<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS>) �  �  �  
(P12<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLOK1<N1PLUS>,PLUS<N2PLUS>) �  �  �  
(P120<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) �  request1! �  
(P13<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) �  �  �  
(P14<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) �  enter1! �  
(P15<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) �  enter2! �  
(P15<P1STEP>,P25<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) . 

VI. CONCLUSION 

This paper shows, how the properties of mutual exclusion 
algorithms can be formally verified. The analysis of the com-
pound process can answer all questions, but the problem is 
the size of the process. Minimisation can help, but it hides 
some properties and it is also a complex operation. For exam-
ple, our tool cannot automatically find testing equivalent 
processes and therefore we needed about one hour of hard 
work for each of them. On the other hand, ACTL model 
checking is an effective and fully automatic method. There, 
the most complex task is the construction of ACTL formulae. 

Another variant of Bakery algorithm is also known to us. It 
is obtained by assuming line i2 in Fig. 1 to be atomic opera-
tion. Then, processes never have equal ticket numbers and 
therefore the condition for entering the critical section can be 
simplified. However, due to Lamport the result of such a rig-
orous modification is an emasculated algorithm and it lacks 
all beauty of the original. 
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