

PREPRINT for EUROCON 2003, September 22-24, 2003, Ljubljana, Slovenija 1

Abstract—This paper is about Bakery algor ithm for mutual ex-
clusion. Three var iants of the algor ithm for two processes are
discussed, formally modelled with a simple process algebra and
then ver ified. Two methods of ver ification are given. In the first
one, the processes representing behaviour of the algor ithms are
minimised with regard to testing equivalence and then examined.
In the second approach, the properties are expressed with tem-
poral logic ACTL and then ver ified using a model checker. Be-
cause we bounded the possible values of var iables, the paper
contibutes new results and knowledge to the well-known facts
about Bakery algor ithm.

Index Terms – ACTL model checking, Bakery algor ithm, Mu-
tual exclusion, Testing equivalence

I. INTRODUCTION

AKERY algorithm for mutual exclusion is a simple and
popular example of concurrent system discovered by L.
Lamport in 1974 [1]. It does not depend upon any form

of central control like semaphores. It implements mutual ex-
clusion for N processes without relying on any lower-level
mutual exclusion and works correct even if read and write
operations on the same word of memory overlap. The algo-
rithm for two processes can be easily derived from a more
general algorithm for N processes. However, some authors
have intentionally or inattentively simplified the original algo-
rithm. It turns out that these modification have significant
impact on the properties of the algorithm.

In Section 2 we describe Lamport’s Bakery algorithm for N
processes. In Section 3, three variants of Bakery algorithm for
two processes are given and discussed. In Section 4, these
variants are modelled with a simple process algebra. The
processes representing behaviour of the algorithms are mini-
mised with regard to testing equivalence and then examined.
In Section 5, we present formal verification using ACTL
model checking. The paper concludes with some remarks.

II. DESCRIPTION OF BAKERY ALGORITHM

Lamport’s Bakery algorithm for mutual exclusion given in
Fig. 1 is designed for a system with N processes. Each of
them includes a critical section which must not be executed
concurrently with the critical sections of the other processes.
A shared memory is used for access arbitration. The arbitra-
tion follows the principle of serving customers at a bakery,
where the processes are the customers which can be served

only one at a time. Each process receives a ticket number as
the costumers in a store would, and the process with the low-
est number is allowed to enter the critical section. This is an
infinite-state system since ticket numbers may grow arbitrarily
large. When a process leaves its critical section, it gets ticket
number 0, which indicates that the process is not interested in
accessing the critical section.

PROCESS Pi
loop forever
i0: <non-critical section>
i1: Choosing(i) := 1;
i2: Number(i) := 1 + max(Number[1],…,Number[N]);
i3: Choosing(i) := 0;

for j in 1..N do begin
i4: loop

exit when Choosing(j) == 0;
end loop;

i5: loop
con: exit when Number(j) == 0 or Number(i) < Number(j) or

 (Number(i) == Number(j) and i < j);
end loop;

 end;
i6: <critical section>
i7: Number(i) := 0;
end loop;

Fig. 1: Bakery algorithm for one out of N processes

By formal verification of Bakery algorithm, the following

properties can be shown:
• Mutual exclusion: at any time, only one process can be

in its critical section.
• Accessibility: if a process expresses interest in entering

the critical section, it will eventually do so.
• One-bounded overtaking: if process Pi intends to enter

the critical section, any other process can enter the criti-
cal section at most once before Pi does.

The Bakery algorithm was the first solution that satisfied all
three properties above for the general case of N processes.

III. BAKERY ALGORITHM VARIANTS FOR TWO PROCESSES

Original variant of Bakery algorithm. From the general
Bakery algorithm the algorithms for the case of two processes
can be derived. Processes P1-BAKERY and P2-BAKERY
use variables c1, c2, n1, and n2 instead of arrays Choosing

Verification of Bakery algorithm variants
 for two processes

David Dedi� 1, Robert Meolic 2
1Nova Vizija d.o.o., Vre�erjeva ulica 8, SI-3310 Žalec

2Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, SI-2000 Maribor
david@vizija.si, meolic@uni-mb.si

B

PREPRINT for EUROCON 2003, September 22-24, 2003, Ljubljana, Slovenija 2

and Number. The algorithms for both processes are shown in
Fig. 2 and they differ only in conditions con1 and con2.

The working principle is the same as in the general Bakery
algorithm. Suppose that both processes are in the non-critical
section, n1=n2=0, and process P1-BAKERY wants to enter
its critical section. It sets variable c1 to 1 and performs addi-
tion in line a2. It gets the ticket number with value 1. After-
wards, process P1-BAKERY enters its critical section as it
has the lowest ticket number and condition con1 is true.
However, process P2-BAKERY also wants to enter the criti-
cal section. The value n2 is set to 2, because value of n1 is 1.
Thus process P2-BAKERY is being denied entering critical
section because the condition con2 is false. It must wait in
loop b4. After process P1-BAKERY leaves the critical sec-
tion, it sets n1=0. Process P2-BAKERY has now the lowest
ticket number and can enter its critical section.

Fig. 2: Bakery algorithm for two processes

What happens if processes P1-BAKERY and P2-BAKERY
want to enter their critical sections simultaneously? If both
processes operate with the same speed, steps a2 and b2 are
calculated simultaneously resulting in value 1 for both vari-
ables n1 and n2. Both processes have the lowest (equal) ticket
number. Due to different conditions for exit in loops a5 and
b5, only the first process will enter its critical section. If con-
ditions con1 and con2 were the same, the system would either
deny or allow both processes to enter its critical section.

A simplified Bakery algorithm. In [2], M. Ben-Ari gives
the variant of Bakery algorithm shown in Fig. 3. Variables c1
and c2, which are important for assuring mutual exclusion,
are removed and their role is compensated by variables n1
and n2, respectively. Moreover, assignments a3 and b3 and
loops a4 and b4 are removed. We will denote the processes
implementing this variant of the algorithm by P1-BEN-ARI
and P2-BEN-ARI.

An even more simplified Bakery algorithm. In [3], authors
present an even more simplified variant of Bakery algorithm,
where variables c1 and c2 are simply missing and not substi-
tuted by any mechanism. Processes implementing this variant
of the algorithm, which do not contain lines a1 and b1, but
are otherwise the same as shown in Fig. 3, will be denoted by
P1-STEP and P2-STEP.

Fig. 3: Simplified Bakery algorithm for two processes from [2]

IV. REPRESENTING ALGORITHMS WITH PROCESSES

Process algebrae are widely used formalisms for modelling
and verification of concurrent systems. Systems are described
as a set of communicating processes. We will use an algebraic
approach which is similar to CCS and has some notation from
CSP. Processes are labelled directed graphs. Graph nodes are
called states. An edge from state p to state q labelled with
action � is called an � -transition or shortly a transition from
state p to state q. If there exists an � -transition from a given
state, we say that in this state the process can perform � -
transition or that it can per form action � . The set of all ac-
tions which a process can perform is called the alphabet of
the process. A sequence of transitions in the process is called
a path. A state without outgoing transitions is a deadlocked
state. The alphabet of a process includes a silent action � ,
which is used to model internal transitions. All actions oth-
ers than � are called visible actions and are divided into input
and output actions. The name of an output action terminates
by '!', e.g. a!, b!,... The name of an input action terminates by
'?', e.g. a?, b?,... The pairs of actions a? and a!, b? and b! etc.
are called complementary actions.

Processes can run concurrently forming a compound sys-
tem. It is assumed that processes perform their transitions
asynchronously. However, each process can perform a visible
action only if one of the other processes in the system concur-
rently performs the complementary action. The only excep-
tions of this rule are special external actions used to interact
with the system environment, which can be performed by a
process independently of the other processes.

An important concept in process algebrae is testing equiva-
lence [4]. An observer O is a process containing special ex-
ternal action w!, which denotes success of the observation. A
concurrent run of process P and observer O is called an ob-
servation, and it is successful if the action w! is performed.
Process P must satisfy the observer O if the observation is
always successful. Process P may satisfy the observer O if
the observation may be successful. Two processes are must
equivalent iff they must satisfy the same sets of observers.
They are may equivalent iff they may satisfy the same sets of
observers. Must equivalence does not imply may equivalence
although for a particular observer, if a process must satisfy
the observer, then also may satisfy it. Finally, the processes
are testing equivalent iff they are must and may equivalent.

PROCES P1-BAKERY
loop forever
a0: <non-critical section>
a1: c1 := 1;
a2: n1 := n2 + 1;
a3: c1 := 0;
a4: loop
 exit when c2==0;
 end loop;
a5: loop
con1: exit when n2==0 or n1<=n2;
 end loop;
a6: <critical section>
a7: n1 := 0;
end loop;

PROCES P2-BAKERY
loop forever
b0: <non-critical section>
b1: c2 := 1;
b2: n2 := n1 + 1;
b3: c2 := 0;
b4: loop
 exit when c1==0;
 end loop;
b5: loop
con2: exit when n1==0 or n2<n1;
 end loop;
b6: <critical section>
b7: n2 := 0;
end loop;

PROCES P1-BEN-ARI
loop forever
a0: <non-critical section>
a1: n1 := 1;
a2: n1 := n2 + 1;
a5: loop
con1: exit when n2==0 or n1<=n2;
 end loop;
a6: <critical section>
a7: n1 := 0;
end loop;

PROCES P2-BEN-ARI
loop forever
b0: <non-critical section>
b1: n2 := 1:
b2: n2 := n1 + 1;
b5: loop
con2: exit when n1==0 or n2<n1;
 end loop;
b6: <critical section>
b7: n2 := 0;
end loop;

PREPRINT for EUROCON 2003, September 22-24, 2003, Ljubljana, Slovenija 3

Processes representing variables. Variables n1, n2, c1,
and c2 are represented with processes composed of states,
such that each state represents one possible value of the vari-
able. Variables c1 and c2 can only have value 0 or 1, whereas
variables n1 and n2 may have value 0, 1, or 2. In Fig. 4, proc-
ess N1 is given in textual form, which is used on a computer.
There, an � -transition from state p to q is denoted by
p = � .q. Processes representing other variables are similar.

N10 = n1r0!.N10 + n1w0?.N10 + n1w1?.N11 + n1w2?.N12
N11 = n1r1!.N11 + n1w0?.N10 + n1w1?.N11 + n1w2?.N12
N12 = n1r2!.N12 + n1w0?.N10 + n1w1?.N11 + n1w2?.N12

Fig. 4: Process N1 representing variable n1

Processes for addition. Addition is implemented as a con-

ditional value setting. We used two different solutions. In the
first case, process NPLUS performs both additions. In the
second solution, there are two separate processes, N1PLUS
and N2PLUS, for the calculation of n1 and n2, respectively.
The main difference between these solutions is that in the last
case concurrent operation on both variables is possible. Proc-
esses for addition are shown in Fig. 5 and 6.

PLUS

PL11

PL12

PLOK1

PL13

PL21

PL22

PLOK2

PL23

n2plus?n1plus?

n1plus! n2plus!

n1r1? n1r0?

n2w1!
n2w2!

n1w1!
n1w2!

n2r0? n2r1?

Fig. 5: Process NPLUS

PL11

PL12

PLOK1

n1w2!

PL13

n1plus?

n1w1!

n2r1?n2r0?

n1plus!

PLUS

PL21

PL22

PLOK2

PL23

n2plus!
n2plus?

n1r0?n1r1?

n2w2!
n2w1!

PLUS

Fig. 6: Processes N1PLUS and N2PLUS

Processes P1-BAKERY and P2-BAKERY. These processes
represent the Bakery algorithm. They are shown in Fig. 7.
The processes are different because of different conditions
con1 and con2. In the model, conditions are optimised as the
values for n1 and n2 are bounded. Actions n1plus! and
n2plus! launch the addition and it is not determined, if the
implementation with one or two processes will be used.

P10

P15

P151

P18

n1plus!

n1r1? n1r2?

n2r2?

n2r0?

P17

P16

P14

P11

P13

c1w1!

c1w0!

c2r0?

P12

n1plus?

enter1!

exit1!

n1w0!

P25

P251 P252

P28

n2r1? n2r2?

n1r0? n1r2?
n1r0?

enter2!

exit2!

n2w0!

P27

P26

P24

P21

c2w1!

P20

P22

P23

c2w0!

n2plus?

n2plus!

c1r0?

Fig. 7: Processes P1-BAKERY and P2-BAKERY

Processes P1-BEN-ARI , P2-BEN-ARI , P1-STEP, and

P2-STEP. These processes are similar to those representing
original Bakery algorithm. Processes P1-BEN-ARI and P2-
BEN-ARI are presented in Fig. 8. Processes P1-STEP and
P2-STEP are almost the same, but their initial states are P11
and P21, respectively, and they also return into these states.

P10

P13

P132

P16

n1plus?

n1r1? n1r2?

enter1!

exit1!

P12

n2r2?

n2r0?

n1w0!

n1plus!

P11

n1w1!

P14

P15

P20

P23

P232

P26

P22

n2plus?

n2r1? n2r2?

n1r0? n1r2?
n1r0?

enter2!

exit2!

n2w0!

n2plus!

P21

n2w1!

P231

P24

P25

Fig. 8: Processes P1-BEN-ARI and P2-BEN-ARI

PREPRINT for EUROCON 2003, September 22-24, 2003, Ljubljana, Slovenija 4

To obtain the behaviour of each variant of Bakery algo-
rithm, separate components are composed in parallel, and the
behaviour of the whole system is then represented with a sin-
gle process. In this way, we create processes BAKERY,
BEN-ARI, STEP, which represent the systems using process
NPLUS, and processes BAKERY2, BEN-ARI2, and STEP2,
which represent the systems where processes N1PLUS and
N2PLUS are used. The obtained processes are large and are
not directly usable for reasoning about the algorithms (see
Table 1). One solution to this problem is to create smaller, but
testing equivalent processes. They contain all externally ob-
servable properties and are shown in Fig. 9, 10, 11, and 12. It
turns out that processes BAKERY and BAKERY2 are testing
equivalent and therefore process TEST-BAKERY adequately
represents both systems. The same situation is with processes
BEN-ARI and BEN-ARI2.

TABLE 1: THE SIZE OF PROCESSES REPRESENTING ALGORITHMS

Process State
s

Transitions

BAKERY 218 381 (52 visible +329 internal)

BAKERY2 292 521 (60 visible +461 internal)

BEN-ARI 148 256 (44 visible +212 internal)

BEN-ARI2 214 383 (52 visible +331 internal)

STEP 112 191 (36 visible +155 internal)

STEP2 242 451 (108 visible +343 internal)

From the obtained processes, interesting conclusions can

be carried out. The algorithms behave differently. All the sys-
tems except STEP2 are may equivalent but they are not must
equivalent. For example, an observer able to perform se-
quences enter1?, w! and enter2?, w! must satisfy processes
BAKERY and STEP, but not process BEN-ARI. By analys-
ing the processes, we can also try to answer the questions
about mutual exclusion, accessibility, and one-bounded over-
taking.

Mutual exclusion: We can easily conclude that all the sys-
tems except STEP2 assure mutual exclusion.

Accessibility: Only STEP and STEP2 assure accessibility,
because the other systems contain deadlocked state. This hap-
pens because variables n1 and n2 are bounded in our model.

One-bounded overtaking: The validity of this property can-
not be established by analysing the minimised processes.

S0

S1

S3 S4

TAU TAU

enter1! enter2!

exit1! exit2!

S2

S5 S6

S7

TAU TAU

TAU TAU

Fig. 9: Process TEST-BAKERY

S0

S4 S5

TAU TAU

enter1! enter2!

exit1! exit2!

S3

S2

S1
TAU

Fig. 10: Process TEST-BEN-ARI

S0

S1

S3 S4

TAU TAU

enter1! enter2!

exit1! exit2!

S2

Fig. 11: Process TEST-STEP

S0

S1

S4 S7

TAU TAU

enter1! enter2!

exit1! exit2!

S3S2

S5

S8

enter2!

S6
exit2!

enter2!enter1!

exit2!

enter1!

exit1!

exit1!

TAU

Fig. 12: Process TEST-STEP2

V. MODEL CHECKING WITH ACTL

We will specify circuit properties using action computa-
tion tree logic (ACTL), which is a propositional branching
time temporal logic. We will use a variant of ACTL with
unless operator [5].

ACTL formulae are composed of constants true and false,
standard Boolean operators NOT, AND, OR, action formulae
written in brackets, path quantifiers E (“ there exists a path”)
and A (“ for all paths”), and temporal operators U (“until”),
W (“unless”), X (“ for the next transition”), F (“ for some tran-
sition in the future”), and G (“ for all transitions in the fu-
ture”). Action formulae may contain visible actions, silent
action � , and standard Boolean operators. ACTL formulae are
evaluated in states. A state where ACTL formula � is valid
will be called � -state. An action for which action formula � is
valid will be called � -action. A transition from state p to state
q where action formula � is valid for the action performed
during this transition and ACTL formula � is valid in state q
will be called (� , �)-transition. The meaning of temporal op-
erators is given as follows:
• Formula X{ � } � is valid on path � iff the first transition

on this path is a (� , �)-transition.
• Formula F{ � } � is valid on path � iff there exists a

(� , �)-transition on this path.

PREPRINT for EUROCON 2003, September 22-24, 2003, Ljubljana, Slovenija 5

• Formula G � { � } is valid on path � iff ACTL formula � is
valid in the first state of this path and all transitions on
the path are (� , �)-transitions.

• Formula [� { � } U{ � ’ } � ’] is valid on path � iff ACTL
formula � is valid in the first state of this path and the
path begins with a finite sequence of (� , �)-transitions
followed by a (� ’ , � ’)-transition.

• Formula [� { � } W{ � ’ } � ’] is valid on path � iff formula
[� { � }U{ � ’ } � ’] is valid on this path or formula
G � { � } is valid on this path.

The listed formulae are called path formulae. Each path
formula must be immediately preceded by a path quantifier.
Path quantifier E requires that the property expressed by the
path formula is valid for at least one path starting in the given
state. Path quantifier A requires that the property expressed
by the path formula is valid for all paths starting in the given
state. In a deadlocked state, formulae EG � { � } , AG � { � } ,
E[� { � } W{ � ’ } � ’], and A[� { � } W{ � ’ } � ’] are valid only if
the state is a � -state. Formulae EX{ � } � , AX{ � } � , EF{ � } � ,
AF{ � } � , E[� { � } U{ � ’ } � ’], and A[� { � } U{ � ’ } � ’] are inva-
lid in all deadlocked states. We will take that an ACTL for-
mula is valid in process P iff it is valid in its initial state.

In ACTL formulae, we will omit the constant true in some
cases, for example: AG � = AG � { true} and E[{ � } U { � ’ }]
= E[true { � } U{ � ’ } true]. We also use commonly used ab-
breviation [�] � . ACTL formula [�] � is valid in the given
state iff all � -transitions from that state are (� , �)-transitions.
To enable the verification of interesting properties, we intro-
duced external actions request1! and request2! in processes
P1 and P2, respectively. We added a transition with this ac-
tion right after the addition completes. Then, we express mu-
tual exclusion, accessibility, and one-bounded overtaking
with the following ACTL formulae:

1. There is no deadlock state:
AG AF { true}

2. If process P1 (P2) enters its critical section, then process
P2 (P1) cannot enter its critical section until P1 exits:
AG [enter1!] A[{ NOT enter2!} U { exit1!}]
AG [enter2!] A[{ NOT enter1!} U { exit2!}]

3. If process P1 (P2) expresses interest in entering its critical
section, it will eventually do so:
AG [request1!] AF { enter1!}
AG [request2!] AF { enter2!}

4. After process P1 (P2) intends to enter its critical section,
process P2 (P1) can enter its critical section at most once
before P1 (P2) does.
AG [request1!] NOT E[{ NOT enter1!} U { enter2!}
 E[{ NOT enter1!} U { enter2!}]]
AG [request2!] NOT E[{ NOT enter2!} U { enter1!}
 E[{ NOT enter2!} U { enter1!}]]

The results of model checking were in accordance with our
expectations after the analysis of testing equivalent processes.
Systems STEP and STEP2 do not have deadlocked states,
while the others have one. All the systems except STEP2 as-
sure mutual exclusion and only STEP and STEP2 assure ac-
cessibility. As a bonus, we also found out that all the systems
have the property of one-bounded overtaking.

Model checking turns out to be very elegant, flexible and
powerful verification method. An additional advantage are
useful counterexamples. For example, the following two ex-
plain, how system BENARI can reach deadlocked state and
why system STEP2 does not assure mutual exclusion.

AG AF { true} ==> FALSE
(P10<P1BENARI>,P20<P2BENARI>,N10<N1>,N20<N2>,PLUS<NPLUS>) � � �
(P10<P1BENARI>,P21<P2BENARI>),N10<N1>,N21<N2>,PLUS<NPLUS>) � � �
(P10<P1BENARI>),P22<P2BENARI>,N10<N1>,N21<N2>,PL21<NPLUS>) � � �
(P11<P1BENARI>,P22<P2BENARI>,N11<N1>,N21<N2>,PL21<NPLUS>) � � �
(P11<P1BENARI>,P22<P2BENARI>,N11<N1>,N21<N2>,PL23<NPLUS>) � � �
(P11<P1BENARI>,P22<P2BENARI>,N11<N1>,N22<N2>,PLOK2<NPLUS>) � � �
(P11<P1BENARI>,P220<P2BENARI>,N11<N1>,N22<N2>,PLUS<NPLUS>) � � �
(P12<P1BENARI>,P220<P2BENARI>,N11<N1>,N22<N2>,PL11<NPLUS>) � request2!

�
(P12<P1BENARI>),P23<P2BENARI>,N11<N1>,N22<N2>,PL11<NPLUS>) � � �
(P12<P1BENARI>,P232<P2BENARI>,N11<N1>,N22<N2>,PL11<NPLUS>) .

AG [enter1!] A[{ NOT enter2!} U { exit1!}] ==> FALSE
(P11<P1STEP>,P21<P2STEP>,N10<N1>,N20<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) � � �
(P11<P1STEP>,P22<P2STEP>,N10<N1>,N20<Y2>,PLUS<N1PLUS>,PL21<N2PLUS>) � � �
(P11<P1STEP>,P22<P2STEP>,N10<N1>,N20<N2>,PLUS<N1PLUS>,PL22<N2PLUS>) � � �
(P12<P1STEP>,P22<P2STEP>,N10<N1>,N20<N2>,PL11<N1PLUS>,PL22<N2PLUS>) � � �
(P12<P1STEP>,P22<P2STEP>,N10<N1>,N20<N2>,PL12<N1PLUS>,PL22<N2PLUS>) � � �
P12<P1STEP>,P22<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLOK2<N2PLUS>) � � �
P12<P1STEP>,P220<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS>) � request2! �
(P12<P1STEP>,P23<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS>) � � �
(P12<P1STEP>,P231<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS> � � �
(P12<P1STEP>,P24<P2STEP>,N10<N1>,N21<N2>,PL12<N1PLUS>,PLUS<N2PLUS>) � � �
(P12<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLOK1<N1PLUS>,PLUS<N2PLUS>) � � �
(P120<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) � request1! �
(P13<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) � � �
(P14<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) � enter1! �
(P15<P1STEP>,P24<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) � enter2! �
(P15<P1STEP>,P25<P2STEP>,N11<N1>,N21<N2>,PLUS<N1PLUS>,PLUS<N2PLUS>) .

VI. CONCLUSION

This paper shows, how the properties of mutual exclusion
algorithms can be formally verified. The analysis of the com-
pound process can answer all questions, but the problem is
the size of the process. Minimisation can help, but it hides
some properties and it is also a complex operation. For exam-
ple, our tool cannot automatically find testing equivalent
processes and therefore we needed about one hour of hard
work for each of them. On the other hand, ACTL model
checking is an effective and fully automatic method. There,
the most complex task is the construction of ACTL formulae.

Another variant of Bakery algorithm is also known to us. It
is obtained by assuming line i2 in Fig. 1 to be atomic opera-
tion. Then, processes never have equal ticket numbers and
therefore the condition for entering the critical section can be
simplified. However, due to Lamport the result of such a rig-
orous modification is an emasculated algorithm and it lacks
all beauty of the original.

REFERENCES

[1] L. Lamport. A new solution of Dijkstra's concurrent programming.
Communications of the ACM 17(8):453-455, August 1974.

[2] M. Ben-Ari. Principles of concurrent and distributed programming.
Prentice Hall International (UK), 1990.

[3] N. S. Bjørner et al. Verifying temporal properties of reactive systems:
A STeP tutorial. Formal Methods in System Design, 16(3):227-270,
June 2000.

[4] R. de Nicola and M. C. B. Hennessy. Testing equivalences for proc-
esses. Theoretical Computer Science, 1-2(34):83-133, November 1984.

[5] R. Meolic, T. Kapus, and Z. Brezo�nik. An action computation tree
logic with unless operator. Submitted for publication..

