
THE EFFICIENT SYMBOLIC TOOLS PACKAGE

Robert Meolic, Tatjana Kapus, Zmago Brezočnik
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova ul. 17, SI-2000 Maribor, Slovenia

E-mail: fmeolic,kapus,brezocnik g@uni-mb.si

Abstract: Efficient Symbolic Tools(EST) is a software package for formal verification of con-
current systems. It appears as an educational project and has been entirely written in the Labo-
ratory of Microcomputer Systems at the Faculty of Electrical Engineering and Computer Science
in Maribor. The main purpose of our work was a study of algorithms that could serve for formal
verification of complex protocols, which are used in computer and telecommunication networks.

KEYWORDS: concurrent systems, process algebra, symbolic verification

1 INTRODUCTION

Verifying concurrent systems (e.g. communication protocols) is known to be a
difficult challenge for verification technologies. Concurrent system is a system
composed of two or more components which can be concurrently executed and
communicate with each other. There are many research groups across the world
providing their own tools, commercial or non-commercial, which perform formal
verification of such systems. Inspired by the reported work, we started in 1992 to
build our own tool that we now refer to asEfficient Symbolic Tools package(EST)
[12, 8, 9, 11]. EST distinguishes itself as a small and efficient package with an
easily readable source code and well implemented algorithms. It runs on many
different computers with different operating systems, including HP-UX, Linux,
and Windows 95/98/NT.

A verification problem consists of formally establishing a relationship between
a design specification and a requirements specification of a system. The design
specification describes how the system is implemented and the requirement spec-
ification describes how the system should behave. The system being verified with
EST is described by a set of communicating processes. Processes are represented
using a formalism derived from CSS and CSP. The syntax used for describing
processes is similar to the syntax of the CCS/MEIJE process algebra [1].

EST has a simple user interface. The user enters commands either textually or
choses them from menus. A description of processes is read from textual files.
Processes are then composed together to represent the behaviour of the whole

PREPRINT for SoftCOM 2000, October 10-14, 2000, Split, Croatia



system. Formal verification can be done by equivalence checking or by model
checking.

ESTuses symbolic methods to represent and manipulate processes. States and
transitions are encoded by Boolean functions rather that being explicitly enumer-
ated. Further, Boolean functions are represented with binary decision diagrams
(BDDs). Thus, operations on processes are performed as operations with Boolean
functions, which are actually performed as manipulations with BDDs (Figure 1).

+ a0 � a1 � r0 � r1 � s0 � s1

+ a0 � a1 � r0 � r1 � s0 � s1

+ a0 � a1 � r0 � r1 � s0 � s1

+ :::

+ a0 � a1 � r0 � r1 � s0 � s1

+ a0 � a1 � r0 � r1 � s0 � s1

x0

x1

0

x1

x3x2

+ a0 � a1 � r0 � r1 � s0 � s1

...

=)

... 1 0

a!

b?

�

a!

b!

a!

operations on
BDDs

operations on
Boolean functionsprocesses

operations on
=)

Figure1: A schematic view of symbolic verification

Further, the paper is organised as follows. The next section gives an overview
of EST. The main characteristics of the package are given. An exact description
of used algorithms and mathematical background are not given in this paper. An
interested reader may find them in [2, 3, 4, 5, 10]. Section 3 describes how to in-
teract withESTduring the verification process. Also, this section gives an insight
into the capabilities of the tool. Section 4 presents an example of verification of
a simple concurrent system. In the conclusion we give some directions for future
work.

2 AN OVERVIEW OF EST

EST is a modularized package and thus easy to extend. Currently, there are four
main modules: the Binary Decision Diagrams module, Process Algebra module,
Versis module, and Model Checking module. All modules, except parsers, are
written in C and compiled withgcc , while the user interface is realized with
Tcl/Tk scripts. This enables us to runESTon many different platforms. The flex-
ibility of EST is supported by efficient memory management. Many interesting
systems can be verified with as few as 8 MB of available RAM.

2



TheBinary Decision Diagramsmodule is a general purpose BDD package for
the manipulation of Boolean functions. Boolean functions are represented asre-
duced orderedBDDs with complemented edges. The BDD package includes a
simple parser, cache tables for basic operations, and automatic garbage collection.
All standard operations on Boolean operations are implemented: conjunction, dis-
junction, negation, ITE-operation, existential and universal quantification of vari-
ables, restriction of Boolean functions, and composition of Boolean functions. A
lot of statistics are available about the size of represented Boolean functions and
the efficiency of BDD representation.

TheProcess Algebramodule is a framework for representing processes. Each
process executes input and output actions and transits between states. The concur-
rent execution of two or more processes is asynchronous. An action is an input
action if its name terminates by ’?’, e.g.a?; b?; :::, and it is an output action if
its name terminates by ’!’, e.g.a!; b!; ::: Two actions whose names differ only in
the last character, e.g.a? anda!, are called complementary actions. Two pro-
cesses synchronise with each other by simultaneously performing complementary
actions. Processes may include nondeterminism and there is also the special ac-
tion � , which is used to model internal communications, not visible to an external
observer.

The most important operations performed by the Process Algebra module are
parsingof an input file andencodingof processes. The parser is written using
Flex/Bison and it allows comments in the input file. An example of input file
describing the process from Figure 1 is in Figure 2.

/* sort is a list of action names without ’!’ and ’?’ */
SORT sortExample a,b

/* process is described by its transitions */
PROCESS P
SORT sortExample
ACTIONS a!,b!,b?
INITIAL STATE s0
TRANSITIONS s0 = a!.s1

s1 = b?.s2
s2 = b!.s2 + a!.s3
s3 = TAU.s4
s4 = a!.s0

Figure2: Specification of a process

The Versis module implements operations on processes. The most important
operations are composition of processes and different kinds of equivalence check-
ing. Currently, the Versis module is capable of efficientparallel compositionof
two or more processes, checkingstrongandweak observational equivalenceand

3



checkingtesting equivalence. Parallel composition is used to compose processes
together. A parallel composition of processes represents a common behaviour of
these processes when executed concurrently, where the internal communication
between processes is hidden. Equivalence checking is used for studying the rela-
tionship between processes’ behaviour. Different systems or different levels of the
system abstraction can be compared. Checking of observational equivalences and
checking of testing equivalence are two verification approaches that supplement
each other. The observational equivalences take into account the branching struc-
ture of processes, while the testing equivalence treats processes with regard to the
external observers.

The Model Checking module provides a parser for action computation tree
logic (ACTL) and functions for ACTL model checking. ACTL is used for de-
scribing system properties. It is a propositional branching-time temporal logic,
which is very suitable for specifying properties of a system described with a pro-
cess algebra. It is similar to the popular CTL and it has all the nice characteristics
of it, including the feasibility of efficient symbolic model checking.

The syntax of ACTL formulas consists of constantstrue andfalse, action vari-
ables, standard Boolean operators,path quantifiersE (“there exists a path”) andA
(“for all paths”), andtemporal operatorsU (“until”), U

¯
or UU (“unless”),X (“for

the next transition”),F (“for some transition in the future”), andG (“for all transi-
tions in the future”). With ACTL formulas one can easily express properties like:
“action a! will be executed in the future” (AF fa!g), “it is always possible that
actiona! will be executed” (AG EF fa!g), “action a! will be executed infinitely
often” (AG AF fa!g), “after actiona! has been executed, actionb! will never be
executed” (AG [a!] NOT EF fb!g), and many others.

3 INTERACTING WITH EST

EST is started by running the user interface calledMy Interface , which is im-
plemented as a set ofTcl/Tk scripts and located in subdirectorymi . The main
script is calledmish.tcl (mi shell). After the user interface is initialized,mish
executes commands from filemiStartUp.tcl . Usually, this initializes all other
modules. At this point,EST is ready for work.

My Interface consists of three parts: menu, output window and input window
(Figure 3). Commands are entered in the input window and responses from the
tool appear in the output window. Alternatively, commands can also be chosen
from the menu or read from a user’sTcl script. In the last case, the user has two
different ways to execute the script. With the commandsource the commands
from the script are executed as if they were sequentially entered in the input win-
dow. If the commandxsource is used, after the execution of each command the
information about the time used for the completion of the command is reported.

4



Figure3: My Interface — a simple user interface ofEST

Descriptions of processes are loaded with thepa read process command.
The descriptions are not automatically encoded with Boolean functions. This
has to be done with thepa encode sort and pa encode process com-
mands. An encoded process can be studied in many ways. Its set of states and
transition relation are encoded with Boolean functionS process name and
D process name, respectively. Boolean functions in CNF can be obtained with
thebdd out function command. Moreover, a BDD representing a Boolean
function can be written with thebdd out BDDcommand. Note that the transi-
tion relation of a process can be encoded with a Boolean function which contains
thousands of minterms and therefore a request for writing the Boolean function or
BDD has sense only for small processes. BDD nodes required for the representa-
tion of Boolean function can be counted with thebdd node number command.
An encoded process can be decoded with thepa decode process command.

Two or more processes are composed together with theversis compose
command. The set of states and the transition relation of the resulting
process are encoded with Boolean functionS composition name and
D composition name, respectively. The composed process can be decoded
with thepa decode composition command.

5



Currently, the user can perform formal verification by the following commands:

� versis strong equivalence ,

� versis weak equivalence ,

� versis test equivalence , and

� mc check ACTL.

In the case of equivalence checking, two encoded processes or an encoded process
and a composition of processes are compared. In the case of model checking,
ACTL formulas written in a separate file are checked for their validity in the initial
state of an encoded process or in the initial state of a composition of processes.

4 AN EXAMPLE OF VERIFICATION

EST has already been successfully used for the verification of some larger con-
current systems, for example Bounded Retransmission Protocol [9], but the de-
scription of that work exceeds the scope of this paper. Here, we will present
another interesting verification, namely that ofMilner’s simple distributed sched-
uler, which is a standard scaleable benchmark for process algebra tools [5, 6, 7].
Informally, the system consists ofk processes which are scheduled. The processes
are organized in a ring. Each process starts the next process in the ring. Processk

reactivates process1. A process must never be reactivated before it has terminated.
The scheduler is constructed of one starter processS andk cyclersC1; :::; Ck,

where cyclerCi takes care of processi (Figure 4). The starter is only needed
to start the first cycler at the beginning. CyclerCi first receives signalci? which
indicates that it may start. It then activates processi via actionai!. Next, it waits
for termination of processi (action� ) and in parallel, it informs the next cycler via

�

c1!

Ci:S:

ci+1!

�ai!ci+1!

ci?

Figure4: A description of starterS and cyclerCi

6



an actionci+1! that it may start. Finally, the cycler returns to its initial state. As
usual in process algebras, a parallel execution of two or more actions is modelled
as a possibility of process to perform all permutations of these actions.

The behaviour of the whole system is obtained by the parallel composition of
processS and processesC1; :::; Ck. The composition is weak observational equiv-
alent and also testing equivalent to the process presented in Figure 5.

ak�1!a2!a1! a3!
. . .

ak!

Figure5: External behaviour of the system withk cyclers

Our results of the verification of simple distributed scheduler are shown in Fig-
ure 6. The states and transitions in the composition were counted. Because most
transitions in the composition are transitions with action� , the information about
the number of transitions with actions other than� is also presented. Currently,
our program uses 32-bit numbers for counting and therefore we could not com-
plete this counting for larger processes.

k states
transitions
(without � )

nodes
in BDD

parallel
composition

weak obs.
equivalence

testing
equivalence

4 97 241 (32) 272 0.5s 0.3s 0.4s

8 3073
13825
(1024)

707 2.1s 0.8s 1.3s

12 73729
479233
(24576)

1245 7.1s 1.6s 2.9s

16 1572865
13369345
(524288)

1912 19.5s 2.8s 4.9s

20 31457281 (10485760) 2674 47.5s 4.1s 8.2s

24 603979777 - 3548 97.8s 5.8s 12.8s

28 - - 4534 205.1s 8.0s 18.7s

32 - - 5665 452.8s 10.6s 26.9s

Figure6: The results of verifying simple distributed scheduler

The time required for the completion of parallel composition, weak observa-
tional equivalence and testing equivalence functions was measured on HP 715/100
with 128 MB RAM. The program was allowed to have at most 500000 BDD nodes
at once, so that the total memory consumption never exceeded 32 MB. To get more

7



realistic times for equivalence checking, we always performed garbage collection
after obtaining a parallel composition of processes.

The data presented in Figure 6 show the capability of symbolic methods to effi-
ciently represent and manipulate processes containing millions of states and tran-
sitions. It is worth to say thatEST is also able to verify a system with up to 28
cyclers with considerably stronger limitations: maximum 100000 BDD nodes at
once and the memory consumption limited to 8 MB RAM, which includes the
memory requirements of the user interface, BDD nodes and all neccessary cache
tables. With such restrictions,EST needed 412.6s to obtain parallel compositon
and then additionaly 9.9s to check weak observational equivalence.

Figure 7 compares our results with the reported results of other authors. Our
times were obtained using the same computer and restrictions as stated before. It
is hard to compare results of different tools because various computers were used.
The results for tools named BB [7] and BDD [5] were obtained on much slower
platforms, while the results for tool Severo [6] were measured on only a little bit
slower computer than ours. Note that the computer we used for testing is relatively
slow compared to the systems popular these days. For example, we triedESTwith
the same restrictions on an overclocked Pentium II 266 with Linux and got 7 times
better results!ESTcompleted parallel composition and equivalence checking for
the system with 32 cyclers in 60.9s.

k

BB [7]

only weak

obs. eq.

BDD [5]

compos. &

weak o. eq.

Severo [6]

compos. &

weak o. eq.

EST

parallel

composition

EST

weak obs.

equivalence

EST

compos. &

weak o. eq.

4 0.02s 177s - 0.5s 0.3s 0.8s

6 0.2s 345s - 0.9s 0.5s 1.4s

8 1.2s 665s - 2.1s 0.8s 2.9s

10 7.4s 1147s - 4.1s 1.1s 5.2s

12 53s 1928s - 7.1s 1.6s 8.7s

14 - - 30.25s 11.7s 2.1s 13.8s

16 - 2972s 40.19s 19.5s 2.8s 22.3s

20 - 3259s 75.61s 47.5s 4.1s 51.6s

24 - 4927s - 97.8s 5.8s 103.6s

28 - - - 205.1s 8.0s 213.1s

32 - - - 452.8s 10.6s 463.4s

Figure7: Benchmarks for the problem of simple distributed scheduler

8



5 CONCLUSION

EST is a new tool for the verification of concurrent systems, which has not been
widely presented yet. Its main advantages are the flexibility, portability and an
efficient memory management. The latter is mainly the consequence of a well
implemented BDD package with good garbage collection functions.EST is a
relatively small package and thus easy understandable. In the future, we wish
to add toEST a lot of additional capabilities, for example: introduction of data
passing, introduction of other popular formalisms for describing concurrent sys-
tems, abstraction and minimization of processes, generation of diagnostics, e.g.
counterexamples, ACTL model checking with fairness constraints, simulation of
processes etc.

REFERENCES

[1] C. Bernardeschi et al. A Formal Verification Environment for Railway Signaling System
Design.Formal Methods In System Design, 12(2):139–161, 1998.

[2] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient Implementation of a BDD
Package. InThe Proceedings of the 27th ACM/IEEE Design Automation Conference, pages
40–45, 1990.

[3] R. Cleaveland and M. Hennessy. Testing Equivalence as a Bisimulation Equivalence.Formal
Aspects of Computing, 5:1–20, 1993.

[4] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems.ACM Transactions on Programming Lan-
guages and Systems, 15(1):36–72, January 1993.

[5] Reinhard Enders, Thomas Filkorn, and Dirk Taubner. Generating BDDs for symbolic model
checking in CCS.Distributed Computing, 6(3):155–164, 1993.

[6] M. Ferrero and M. Cusinato. Severo: A symbolic equivalence verification tool. Tesi di Lau-
rea. Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy, October
1994.

[7] Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. InAutomata, Languages and Programming, 17th International
Colloquium, pages 626–638, 1990. LNCS 443.

[8] Robert Meolic.ESTHome Page.
http://www.el.feri.uni-mb.si/est/ .

[9] Robert Meolic. Checking correctness of concurrent systems behaviour. Master’s thesis, Fac-
ulty of Electrical Engineering and Computer Science, Maribor, November 1999. In Slovene.

[10] Robert Meolic, Tatjana Kapus, and Zmago Brezočnik. Verification of concurrent systems
using ACTL. InProceedings of the IASTED International Conference on Applied Informatics
AI’2000, pages 663–669, Innsbruck, Austria, February 2000.

9



[11] M. Sepěsy, T. Kapus, and B. Horvat. Verifikacija komunikacijskega obnašanja sistemov
z uporabo binarnih odlǒcitvenih grafov. InProceedings of the Fifth Electrotechnical and
Computer Science Conference ERK’96, Portorož, Slovenia, volume B, pages 23–26, 1996.

[12] A. Časar, R. Meolic, Z. Brezǒcnik, and B. Horvat. Predstavitev logičnih funkcij z mini-
malnimi urejenimi binarnimi odlǒcitvenimi grafi. Elektrotehniški vestnik, 59(5):299–307,
December 1992.

10


