
HTTP Made Really Easy http://www.jmarshall.com/easy/http/

1 od 13 04. 04. 2006 10:25

 HTTP Made Really Easy

A Practical Guide to Writing Clients and Servers

Home > Web Technology Made Really Easy | Donate

Table of Contents | Footnotes

HTTP is the network protocol of the Web. It is both simple and powerful. Knowing HTTP enables you to
write Web browsers, Web servers, automatic page downloaders, link-checkers, and other useful tools.

This tutorial explains the simple, English-based structure of HTTP communication, and teaches you the
practical details of writing HTTP clients and servers. It assumes you know basic socket programming.
HTTP is simple enough for a beginning sockets programmer, so this page might be a good followup to a
sockets tutorial. This Sockets FAQ (hint: see "Categorized Questions" section at bottom) focuses on C,
but the underlying concepts are language-independent.

Since you’re reading this, you probably already use CGI. If not, it makes sense to learn that first.

The whole tutorial is about 15 printed pages long, including examples. The first half explains basic
HTTP 1.0, and the second half explains the new requirements and features of HTTP 1.1. This tutorial
doesn’t cover everything about HTTP; it explains the basic framework, how to comply with the
requirements, and where to find out more when you need it. If you plan to use HTTP extensively, you
should read the specification as well-- see the end of this document for more details.

Before getting started, understand the following two paragraphs:

<LECTURE>

Writing HTTP or other network programs requires more care than programming for a
single machine. Of course, you have to follow standards, or no one will understand you. But
even more important is the burden you place on other machines. Write a bad program for
your own machine, and you waste your own resources (CPU time, bandwidth, memory).
Write a bad network program, and you waste other people’s resources. Write a really bad
network program, and you waste many thousands of people’s resources at the same time.
Sloppy and malicious network programming forces network standards to be modified, made
safer but less efficient. So be careful, respectful, and cooperative, for everyone’s sake.

In particular, don’t be tempted to write programs that automatically follow Web links
(called robots or spiders) before you really know what you’re doing. They can be useful, but
a badly-written robot is one of the worst kinds of programs on the Web, blindly following a
rapidly increasing number of links and quickly draining server resources. If you plan to write
anything like a robot, please read more about them. There may already be a working program
to do what you want. If you really need to write your own, read these guidelines. Definitely
support the current Standard for Robot Exclusion, and stay tuned for further developments.

</LECTURE>

OK, enough of that. Let’s get started.

Table of Contents
Top of Page

Using HTTP 1.0

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

2 od 13 04. 04. 2006 10:25

What is HTTP?
What are "Resources"?1.

1.

Structure of HTTP Transactions
Initial Request Line1.
Initial Response Line (Status Line)2.
Header Lines3.
The Message Body4.

2.

Sample HTTP Exchange3.
Other HTTP Methods, Like HEAD and POST

The HEAD Method1.
The POST Method2.

4.

HTTP Proxies5.
Being Tolerant of Others6.
Conclusion7.

Upgrading to HTTP 1.1

HTTP 1.11.
HTTP 1.1 Clients

Host: Header1.
Chunked Transfer-Encoding2.
Persistent Connections and the "Connection: close" Header3.
The "100 Continue" Response4.

2.

HTTP 1.1 Servers
Requiring the Host: Header1.
Accepting Absolute URL’s2.
Chunked Transfer-Encoding3.
Persistent Connections and the "Connection: close" Header4.
Using the "100 Continue" Response5.
The Date: Header6.
Handling Requests with If-Modified-Since: or If-Unmodified-Since: Headers7.
Supporting the GET and HEAD methods8.
Supporting HTTP 1.0 Requests9.

3.

Appendix

The HTTP Specification1.

Several related topics are discussed on a "footnotes" page:

Sample HTTP Client1.
Using GET to Submit Query or Form Data2.
URL-encoding3.
Manually Experimenting with HTTP4.

What is HTTP?

HTTP stands for Hypertext Transfer Protocol. It’s the network protocol used to deliver virtually all files
and other data (collectively called resources) on the World Wide Web, whether they’re HTML files,
image files, query results, or anything else. Usually, HTTP takes place through TCP/IP sockets (and this
tutorial ignores other possibilities).

A browser is an HTTP client because it sends requests to an HTTP server (Web server), which then sends
responses back to the client. The standard (and default) port for HTTP servers to listen on is 80, though
they can use any port.

What are "Resources"?

HTTP is used to transmit resources, not just files. A resource is some chunk of information that can be
identified by a URL (it’s the R in URL). The most common kind of resource is a file, but a resource may

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

3 od 13 04. 04. 2006 10:25

also be a dynamically-generated query result, the output of a CGI script, a document that is available in
several languages, or something else.

While learning HTTP, it may help to think of a resource as similar to a file, but more general. As a
practical matter, almost all HTTP resources are currently either files or server-side script output.

Return to Table of Contents

Structure of HTTP Transactions

Like most network protocols, HTTP uses the client-server model: An HTTP client opens a connection and
sends a request message to an HTTP server; the server then returns a response message, usually
containing the resource that was requested. After delivering the response, the server closes the connection
(making HTTP a stateless protocol, i.e. not maintaining any connection information between
transactions).

The format of the request and response messages are similar, and English-oriented. Both kinds of
messages consist of:

an initial line,
zero or more header lines,
a blank line (i.e. a CRLF by itself), and
an optional message body (e.g. a file, or query data, or query output).

Put another way, the format of an HTTP message is:

<initial line, different for request vs. response>
Header1: value1
Header2: value2
Header3: value3

<optional message body goes here, like file contents or query data;
 it can be many lines long, or even binary data $&*%@!^$@>

Initial lines and headers should end in CRLF, though you should gracefully handle lines ending in just LF.
(More exactly, CR and LF here mean ASCII values 13 and 10, even though some platforms may use
different characters.)

Return to Table of Contents

Initial Request Line

The initial line is different for the request than for the response. A request line has three parts, separated
by spaces: a method name, the local path of the requested resource, and the version of HTTP being used.
A typical request line is:

GET /path/to/file/index.html HTTP/1.0

Notes:

GET is the most common HTTP method; it says "give me this resource". Other methods include
POST and HEAD-- more on those later. Method names are always uppercase.
The path is the part of the URL after the host name, also called the request URI (a URI is like a
URL, but more general).
The HTTP version always takes the form "HTTP/x.x", uppercase.

Return to Table of Contents

Initial Response Line (Status Line)

The initial response line, called the status line, also has three parts separated by spaces: the HTTP version,
a response status code that gives the result of the request, and an English reason phrase describing the

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

4 od 13 04. 04. 2006 10:25

status code. Typical status lines are:

HTTP/1.0 200 OK

or

HTTP/1.0 404 Not Found

Notes:

The HTTP version is in the same format as in the request line, "HTTP/x.x".
The status code is meant to be computer-readable; the reason phrase is meant to be human-readable,
and may vary.
The status code is a three-digit integer, and the first digit identifies the general category of response:

1xx indicates an informational message only
2xx indicates success of some kind
3xx redirects the client to another URL
4xx indicates an error on the client’s part
5xx indicates an error on the server’s part

The most common status codes are:

200 OK

The request succeeded, and the resulting resource (e.g. file or script output) is returned in the
message body.

404 Not Found

The requested resource doesn’t exist.
301 Moved Permanently
302 Moved Temporarily
303 See Other (HTTP 1.1 only)

The resource has moved to another URL (given by the Location: response header), and should be
automatically retrieved by the client. This is often used by a CGI script to redirect the browser to an
existing file.

500 Server Error

An unexpected server error. The most common cause is a server-side script that has bad syntax,
fails, or otherwise can’t run correctly.

A complete list of status codes is in the HTTP specification (section 9 for HTTP 1.0, and section 10 for
HTTP 1.1).

Return to Table of Contents

Header Lines

Header lines provide information about the request or response, or about the object sent in the message
body.

The header lines are in the usual text header format, which is: one line per header, of the form
"Header-Name: value ", ending with CRLF. It’s the same format used for email and news postings, defined
in RFC 822, section 3. Details about RFC 822 header lines:

As noted above, they should end in CRLF, but you should handle LF correctly.
The header name is not case-sensitive (though the value may be).
Any number of spaces or tabs may be between the ":" and the value.
Header lines beginning with space or tab are actually part of the previous header line, folded into
multiple lines for easy reading.

Thus, the following two headers are equivalent:

Header1: some-long-value-1a, some-long-value-1b

HEADER1: some-long-value-1a,
 some-long-value-1b

HTTP 1.0 defines 16 headers, though none are required. HTTP 1.1 defines 46 headers, and one (Host:) is

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

5 od 13 04. 04. 2006 10:25

required in requests. For Net-politeness, consider including these headers in your requests:

The From: header gives the email address of whoever’s making the request, or running the program
doing so. (This must be user-configurable, for privacy concerns.)
The User-Agent: header identifies the program that’s making the request, in the form
"Program-name/x.xx", where x.xx is the (mostly) alphanumeric version of the program. For
example, Netscape 3.0 sends the header "User-agent: Mozilla/3.0Gold ".

These headers help webmasters troubleshoot problems. They also reveal information about the user.
When you decide which headers to include, you must balance the webmasters’ logging needs against your
users’ needs for privacy.

If you’re writing servers, consider including these headers in your responses:

The Server: header is analogous to the User-Agent: header: it identifies the server software in the
form "Program-name/x.xx". For example, one beta version of Apache’s server returns
"Server: Apache/1.2b3-dev ".
The Last-Modified: header gives the modification date of the resource that’s being returned. It’s
used in caching and other bandwidth-saving activities. Use Greenwich Mean Time, in the format

 Last-Modified: Fri, 31 Dec 1999 23:59:59 GMT

Return to Table of Contents

The Message Body

An HTTP message may have a body of data sent after the header lines. In a response, this is where the
requested resource is returned to the client (the most common use of the message body), or perhaps
explanatory text if there’s an error. In a request, this is where user-entered data or uploaded files are sent
to the server.

If an HTTP message includes a body, there are usually header lines in the message that describe the body.
In particular,

The Content-Type: header gives the MIME-type of the data in the body, such as text/html or
image/gif.
The Content-Length: header gives the number of bytes in the body.

Return to Table of Contents

Sample HTTP Exchange

To retrieve the file at the URL

http://www.somehost.com/path/file.html

first open a socket to the host www.somehost.com, port 80 (use the default port of 80 because none is
specified in the URL). Then, send something like the following through the socket:

GET /path/file.html HTTP/1.0
From: someuser@jmarshall.com
User-Agent: HTTPTool/1.0
[blank line here]

The server should respond with something like the following, sent back through the same socket:

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
<h1>Happy New Millennium!</h1>

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

6 od 13 04. 04. 2006 10:25

(more file contents)
 .
 .
 .
</body>
</html>

After sending the response, the server closes the socket.

To familiarize yourself with requests and responses, manually experiment with HTTP using telnet.

Return to Table of Contents

Other HTTP Methods, Like HEAD and POST

Besides GET, the two most commonly used methods are HEAD and POST.

The HEAD Method

A HEAD request is just like a GET request, except it asks the server to return the response headers only,
and not the actual resource (i.e. no message body). This is useful to check characteristics of a resource
without actually downloading it, thus saving bandwidth. Use HEAD when you don’t actually need a file’s
contents.

The response to a HEAD request must never contain a message body, just the status line and headers.

Return to Table of Contents

The POST Method

A POST request is used to send data to the server to be processed in some way, like by a CGI script. A
POST request is different from a GET request in the following ways:

There’s a block of data sent with the request, in the message body. There are usually extra headers
to describe this message body, like Content-Type: and Content-Length:.
The request URI is not a resource to retrieve; it’s usually a program to handle the data you’re
sending.
The HTTP response is normally program output, not a static file.

The most common use of POST, by far, is to submit HTML form data to CGI scripts. In this case, the
Content-Type: header is usually application/x-www-form-urlencoded, and the Content-Length: header
gives the length of the URL-encoded form data (here’s a note on URL-encoding). The CGI script receives
the message body through STDIN, and decodes it. Here’s a typical form submission, using POST:

POST /path/script.cgi HTTP/1.0
From: frog@jmarshall.com
User-Agent: HTTPTool/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 32

home=Cosby&favorite+flavor=flies

You can use a POST request to send whatever data you want, not just form submissions. Just make sure
the sender and the receiving program agree on the format.

The GET method can also be used to submit forms. The form data is URL-encoded and appended to the
request URI. Here are more details.

If you’re writing HTTP servers that support CGI scripts, you should read the NCSA’s CGI definition if
you haven’t already, especially which environment variables you need to pass to the scripts.

Return to Table of Contents

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

7 od 13 04. 04. 2006 10:25

HTTP Proxies

An HTTP proxy is a program that acts as an intermediary between a client and a server. It receives
requests from clients, and forwards those requests to the intended servers. The responses pass back
through it in the same way. Thus, a proxy has functions of both a client and a server.

Proxies are commonly used in firewalls, for LAN-wide caches, or in other situations. If you’re writing
proxies, read the HTTP specification; it contains details about proxies not covered in this tutorial.

When a client uses a proxy, it typically sends all requests to that proxy, instead of to the servers in the
URLs. Requests to a proxy differ from normal requests in one way: in the first line, they use the complete
URL of the resource being requested, instead of just the path. For example,

GET http://www.somehost.com/path/file.html HTTP/1.0

That way, the proxy knows which server to forward the request to (though the proxy itself may use
another proxy).

Return to Table of Contents

Being Tolerant of Others

As the saying goes (in network programming, anyway), "Be strict in what you send and tolerant in what
you receive." Other clients and servers you interact with may have minor flaws in their messages, but you
should try to work gracefully with them. In particular, the HTTP specification suggests the following:

Even though header lines should end with CRLF, someone might use a single LF instead. Accept
either CRLF or LF.
The three fields in the initial message line should be separated by a single space, but might instead
use several spaces, or tabs. Accept any number of spaces or tabs between these fields.

The specification has other suggestions too, like how to handle varying date formats. If your program
interprets dates from other programs, read the "Tolerant Applications" section of the specification.

Return to Table of Contents

Conclusion

That’s the basic structure of HTTP. If you understand everything so far, you have a good overview of
HTTP communication, and should be able to write simple HTTP 1.0 programs. See this example to get
started. Again, before you do anything heavy-duty, read the specification.

The rest of this document tells how to upgrade your clients and servers to use HTTP 1.1. There is a list of
new client requirements, and a list of new server requirements. You can stop here if HTTP 1.0 satisfies
your current needs (though you’ll probably need HTTP 1.1 in the future).

Note: As of early 1997, the Web is moving from HTTP 1.0 to HTTP 1.1. Whenever practical, use
HTTP 1.1. It’s more efficient overall, and by using it, you’ll help the Web perform better for everyone.

HTTP 1.1
Like many protocols, HTTP is constantly evolving. HTTP 1.1 has recently been defined, to address new
needs and overcome shortcomings of HTTP 1.0. Generally speaking, it is a superset of HTTP 1.0.
Improvements include:

Faster response, by allowing multiple transactions to take place over a single persistent connection.

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

8 od 13 04. 04. 2006 10:25

Faster response and great bandwidth savings, by adding cache support.
Faster response for dynamically-generated pages, by supporting chunked encoding, which allows a
response to be sent before its total length is known.
Efficient use of IP addresses, by allowing multiple domains to be served from a single IP address.

HTTP 1.1 requires a few extra things from both clients and servers. The next two sections detail how to
make clients and servers comply with HTTP 1.1. If you’re only writing clients, you can skip the section
on servers. If you’re writing servers, read both sections.

Only requirements for HTTP 1.1 compliance are described here. HTTP 1.1 has many optional features
you may find useful; read the specification to learn more.

Return to Table of Contents

HTTP 1.1 Clients

To comply with HTTP 1.1, clients must

include the Host: header with each request
accept responses with chunked data
either support persistent connections, or include the "Connection: close " header with each request
handle the "100 Continue " response

Return to Table of Contents

Host: Header

Starting with HTTP 1.1, one server at one IP address can be multi-homed, i.e. the home of several Web
domains. For example, "www.host1.com" and "www.host2.com" can live on the same server.

Several domains living on the same server is like several people sharing one phone: a caller knows who
they’re calling for, but whoever answers the phone doesn’t. Thus, every HTTP request must specify
which host name (and possibly port) the request is intended for, with the Host: header. A complete
HTTP 1.1 request might be

GET /path/file.html HTTP/1.1
Host: www.host1.com:80
[blank line here]

except the ":80" isn’t required, since that’s the default HTTP port.

Host: is the only required header in an HTTP 1.1 request. It’s also the most urgently needed new feature
in HTTP 1.1. Without it, each host name requires a unique IP address, and we’re quickly running out of IP
addresses with the explosion of new domains.

Return to Table of Contents

Chunked Transfer-Encoding

If a server wants to start sending a response before knowing its total length (like with long script output),
it might use the simple chunked transfer-encoding, which breaks the complete response into smaller
chunks and sends them in series. You can identify such a response because it contains the
"Transfer-Encoding: chunked " header. All HTTP 1.1 clients must be able to receive chunked messages.

A chunked message body contains a series of chunks, followed by a line with "0" (zero), followed by
optional footers (just like headers), and a blank line. Each chunk consists of two parts:

a line with the size of the chunk data, in hex, possibly followed by a semicolon and extra
parameters you can ignore (none are currently standard), and ending with CRLF.
the data itself, followed by CRLF.

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

9 od 13 04. 04. 2006 10:25

So a chunked response might look like the following:

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Transfer-Encoding: chunked

1a; ignore-stuff-here
abcdefghijklmnopqrstuvwxyz
10
1234567890abcdef
0
some-footer: some-value
another-footer: another-value
[blank line here]

Note the blank line after the last footer. The length of the text data is 42 bytes (1a + 10, in hex), and the
data itself is abcdefghijklmnopqrstuvwxyz1234567890abcdef. The footers should be treated like
headers, as if they were at the top of the response.

The chunks can contain any binary data, and may be much larger than the examples here. The size-line
parameters are rarely used, but you should at least ignore them correctly. Footers are also rare, but might
be appropriate for things like checksums or digital signatures.

For comparison, here’s the equivalent to the above response, without using chunked encoding:

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Content-Length: 42
some-footer: some-value
another-footer: another-value

abcdefghijklmnopqrstuvwxyz1234567890abcdef

Return to Table of Contents

Persistent Connections and the "Connection: close" Header

In HTTP 1.0 and before, TCP connections are closed after each request and response, so each resource to
be retrieved requires its own connection. Opening and closing TCP connections takes a substantial
amount of CPU time, bandwidth, and memory. In practice, most Web pages consist of several files on the
same server, so much can be saved by allowing several requests and responses to be sent through a single
persistent connection.

Persistent connections are the default in HTTP 1.1, so nothing special is required to use them. Just open a
connection and send several requests in series (called pipelining), and read the responses in the same
order as the requests were sent. If you do this, be very careful to read the correct length of each response,
to separate them correctly.

If a client includes the "Connection: close " header in the request, then the connection will be closed after
the corresponding response. Use this if you don’t support persistent connections, or if you know a
request will be the last on its connection. Similarly, if a response contains this header, then the server will
close the connection following that response, and the client shouldn’t send any more requests through that
connection.

A server might close the connection before all responses are sent, so a client must keep track of requests
and resend them as needed. When resending, don’t pipeline the requests until you know the connection is
persistent. Don’t pipeline at all if you know the server won’t support persistent connections (like if it uses
HTTP 1.0, based on a previous response).

Return to Table of Contents

The "100 Continue" Response

During the course of an HTTP 1.1 client sending a request to a server, the server might respond with an
interim "100 Continue " response. This means the server has received the first part of the request, and can
be used to aid communication over slow links. In any case, all HTTP 1.1 clients must handle the 100

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

10 od 13 04. 04. 2006 10:25

response correctly (perhaps by just ignoring it).

The "100 Continue " response is structured like any HTTP response, i.e. consists of a status line, optional
headers, and a blank line. Unlike other responses, it is always followed by another complete, final
response.

So, further extending the last example, the full data that comes back from the server might consist of two
responses in series, like

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Content-Length: 42
some-footer: some-value
another-footer: another-value

abcdefghijklmnoprstuvwxyz1234567890abcdef

To handle this, a simple HTTP 1.1 client might read one response from the socket; if the status code is
100, discard the first response and read the next one instead.

Return to Table of Contents

HTTP 1.1 Servers

To comply with HTTP 1.1, servers must:

require the Host: header from HTTP 1.1 clients
accept absolute URL’s in a request
accept requests with chunked data
either support persistent connections, or include the "Connection: close " header with each
response
use the "100 Continue " response appropriately
include the Date: header in each response
handle requests with If-Modified-Since: or If-Unmodified-Since: headers
support at least the GET and HEAD methods
support HTTP 1.0 requests

Return to Table of Contents

Requiring the Host: Header

Because of the urgency of implementing the new Host: header, servers are not allowed to tolerate
HTTP 1.1 requests without it. If a server receives such a request, it must return a "400 Bad Request "
response, like

HTTP/1.1 400 Bad Request
Content-Type: text/html
Content-Length: 111

<html><body>
<h2>No Host: header received</h2>
HTTP 1.1 requests must include the Host: header.
</body></html>

This requirement applies only to clients using HTTP 1.1, not any future version of HTTP. If the request
uses an HTTP version later than 1.1, the server can accept an absolute URL instead of a Host: header (see
next section). If the request uses HTTP 1.0, the server may accept the request without any host
identification.

Return to Table of Contents

Accepting Absolute URL’s

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

11 od 13 04. 04. 2006 10:25

The Host: header is actually an interim solution to the problem of host identification. In future versions of
HTTP, requests will use an absolute URL instead of a pathname, like

GET http://www.somehost.com/path/file.html HTTP/1.2

To enable this protocol transition, HTTP 1.1 servers must accept this form of request, even though
HTTP 1.1 clients won’t send them. The server must still report an error if an HTTP 1.1 client leaves out
the Host: header, as described in the previous section.

Return to Table of Contents

Chunked Transfer-Encoding

Just as HTTP 1.1 clients must accept chunked responses, servers must accept chunked requests (an
unlikely scenario, but possible). See the earlier section on HTTP 1.1 Clients for details of the chunked
data format.

Servers aren’t required to generate chunked messages; they just have to be able to receive them.

Return to Table of Contents

Persistent Connections and the "Connection: close" Header

If an HTTP 1.1 client sends multiple requests through a single connection, the server should send
responses back in the same order as the requests-- this is all it takes for a server to support persistent
connections.

If a request includes the "Connection: close " header, that request is the final one for the connection and
the server should close the connection after sending the response. Also, the server should close an idle
connection after some timeout period (can be anything; 10 seconds is fine).

If you don’t want to support persistent connections, include the "Connection: close " header in the
response. Use this header whenever you want to close the connection, even if not all requests have been
fulfilled. The header says that the connection will be closed after the current response, and a valid
HTTP 1.1 client will handle it correctly.

Return to Table of Contents

Using the "100 Continue" Response

As described in the section on HTTP 1.1 Clients, this response exists to help deal with slow links.

When an HTTP 1.1 server receives the first line of an HTTP 1.1 (or later) request, it must respond with
either "100 Continue " or an error. If it sends the "100 Continue " response, it must also send another, final
response, once the request has been processed. The "100 Continue " response requires no headers, but
must be followed by the usual blank line, like:

HTTP/1.1 100 Continue
[blank line here]
[another HTTP response will go here]

Don’t send "100 Continue " to HTTP 1.0 clients, since they don’t know how to handle it.

Return to Table of Contents

The Date: Header

Caching is an important improvement in HTTP 1.1, and can’t work without timestamped responses. So,
servers must timestamp every response with a Date: header containing the current time, in the form

Date: Fri, 31 Dec 1999 23:59:59 GMT

All responses except those with 100-level status (but including error responses) must include the Date:

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

12 od 13 04. 04. 2006 10:25

header.

All time values in HTTP use Greenwich Mean Time.

Return to Table of Contents

Handling Requests with If-Modified-Since: or If-Unmodified-Since: Headers

To avoid sending resources that don’t need to be sent, thus saving bandwidth, HTTP 1.1 defines the
If-Modified-Since: and If-Unmodified-Since: request headers. The former says "only send the resource
if it has changed since this date"; the latter says the opposite. Clients aren’t required to use them, but
HTTP 1.1 servers are required to honor requests that do use them.

Unfortunately, due to earlier HTTP versions, the date value may be in any of three possible formats:

If-Modified-Since: Fri, 31 Dec 1999 23:59:59 GMT
If-Modified-Since: Friday, 31-Dec-99 23:59:59 GMT
If-Modified-Since: Fri Dec 31 23:59:59 1999

Again, all time values in HTTP use Greenwich Mean Time (though try to be tolerant of non-GMT times).
If a date with a two-digit year seems to be more than 50 years in the future, treat it as being in the past--
this helps with the millennium bug. In fact, do this with any date handling in HTTP 1.1.

Although servers must accept all three date formats, HTTP 1.1 clients and servers must only generate the
first kind.

If the date in either of these headers is invalid, or is in the future, ignore the header.

If, without the header, the request would result in an unsuccessful (non-200-level) status code, ignore the
header and send the non-200-level response. In other words, only apply these headers when you know the
resource would otherwise be sent.

The If-Modified-Since: header is used with a GET request. If the requested resource has been modified
since the given date, ignore the header and return the resource as you normally would. Otherwise, return a
"304 Not Modified " response, including the Date: header and no message body, like

HTTP/1.1 304 Not Modified
Date: Fri, 31 Dec 1999 23:59:59 GMT
[blank line here]

The If-Unmodified-Since: header is similar, but can be used with any method. If the requested resource
has not been modified since the given date, ignore the header and return the resource as you normally
would. Otherwise, return a "412 Precondition Failed " response, like

HTTP/1.1 412 Precondition Failed
[blank line here]

Return to Table of Contents

Supporting the GET and HEAD methods

To comply with HTTP 1.1, a server must support at least the GET and HEAD methods. If you’re handling
CGI scripts, you should probably support the POST method too.

Four other methods (PUT, DELETE, OPTIONS, and TRACE) are defined in HTTP 1.1, but are rarely
used. If a client requests a method you don’t support, respond with "501 Not Implemented ", like

HTTP/1.1 501 Not Implemented
[blank line here]

Return to Table of Contents

Supporting HTTP 1.0 Requests

To be compatible with older browsers, HTTP 1.1 servers must support HTTP 1.0 requests. In particular,

HTTP Made Really Easy http://www.jmarshall.com/easy/http/

13 od 13 04. 04. 2006 10:25

when a request uses HTTP 1.0 (as identified in the initial request line),

don’t require the Host: header, and
don’t send the "100 Continue " response.

Return to Table of Contents

The HTTP Specification
If you plan to do anything elaborate in HTTP, read the official specification. HTTP 1.0 was never made
an official Internet standard, but the de facto standard is described in RFC 1945. HTTP 1.1 was developed
by a working group of the IETF, openly gathering input from many sources before reaching an
approximate consensus. The resulting specification is RFC 2616, released in June 1999.

These documents are available in various formats:

HTTP 1.0 (RFC 1945)-- HTML, text, and gzip’d PostScript
HTTP 1.1 (RFC 2616)-- HTML, text, PostScript, and PDF.

Download and print the version you’ ll be using, for reference and bedtime reading.

The World Wide Web Consortium has a page devoted to HTTP including news and updates, and a page
listing HTTP specifications, drafts, and reports.

Other RFC’s you might find useful:

RFC 822-- structure of Internet text messages, including header fields
RFC 2396-- definition of URL/URI syntax (replaces RFC 1738 and RFC 1808)
RFC 1521-- definition of MIME and of MIME types

Return to Table of Contents

© 1997 James Marshall (comments welcome)

Last (significantly) modified: August 15, 1997 http://www.jmarshall.com/easy/http/

