

TU Braunschweig Institut für Betriebssysteme und Rechnerverbund

Vorlesung Betriebssysteme und Netze

Prof. Dr. Lars Wolf Sommersemester 2003

Kapitel 8: Local und Wide Area Networks

Überblick

LANs

- Eigenschaften und Standards
- IEEE 802.3 (Ethernet)
- IEEE 802.5 (Token Ring)
- IEEE 802.11 (Wireless LAN)

WANs

- Eigenschaften von Weitverkehrsnetzen
- Integrated Services Digital Network ISDN
- Asynchronous Transfer Mode ATM
- Wavelength Division Multiplexing WDM

Eigenschaften lokaler Netze

- Kennzeichen lokaler Netze (local area networks, LANs):
 - Netze zur bitseriellen Übertragung von Daten zwischen unabhängigen, miteinander verbundenen Komponenten.
 - Unter rechtlicher Kontrolle des Benutzers/Betreibers und meist auf den Bereich innerhalb eines Grundstücks beschränkt.
 - Maximaler Durchmesser des Netzes im Bereich von wenigen Kilometern.
 - Relativ hohe Geschwindigkeit (10 Mbps 1 Gbps).
 - Leichter, kostengünstiger Anschluß für Geräte unterschiedlichster Art (z.B. PCs, Workstation, Drucker, Messgeräte, ...)

LAN-Entwicklung

- Entwicklung der LANs seit Mitte der 70er Jahre.
- Weite Verbreitung von Ethernet und Token Ring LANs in den 80er Jahren.
- Derzeit Entwicklung von Hochgeschwindigkeit-LANs (Fast Ethernet, Gigabit Ethernet, lokales ATM, ...)
- Stark zunehmende Verbreitung von Wireless LANs

IEEE Standards für lokale Netze

- Die gebräuchlichsten Standards für lokale Netze (local area networks, LAN) stammen von der IEEE (Institute of Electrical and Electronics Engineers).
- IEEE-Standards für lokale Netze werden in den IEEE 802-Dokumenten veröffentlicht.
- Einige der IEEE-Standards wurden von der ISO übernommen und als ISO-Standards mit gleichem Inhalt veröffentlicht.

IEEE-Standards

IEEE 802.1	High Level Interface		
IEEE 802.2	Logical Link Control		
IEEE 802.3	CSMA/CD LANs		
IEEE 802.4	Token-Bus LANs		
IEEE 802.5	Token-Ring LANs		
IEEE 802.6	DQDB MANs		
IEEE 802.7	Broadband LANs		
IEEE 802.8	Fibre Optics		
IEEE 802.9	Isochronous LANs		
IEEE 802.10	Security		
IEEE 802.11	Wireless LANs		
IEEE 802.12	Demand Priority Access		
IEEE 802.14	Cable Modems		
IEEE 802.15	Wireless Personal Area Network		
IEEE 802.16	Broadband Wireless Access		
IEEE 802.17	Resilient Packet Ring		
Prof. Dr. Lars Wolf	Betriebssysteme und Netze		

IBR, TU Braunschweig

LANs im ISO/OSI-Referenzmodell

 Die LAN-Protokolle sind in der zweiten Schicht des ISO/OSI- Referenzmodells (Sicherungsschicht, data link layer) angesiedelt.

 Die Sicherungsschicht wird in zwei Teilschichten aufgeteilt:

 Die logical link control (LLC) Schicht realisiert die normalerweise in der Schicht 2 vorhandenen Sicherungsfunktionen.

Logical Link Control

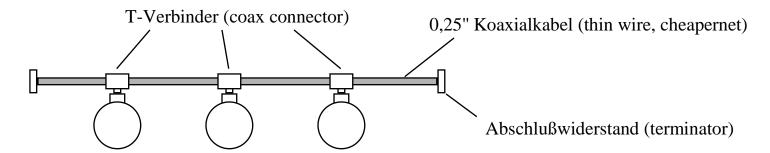
Media Access Control

 Die media access control (MAC) Schicht regelt den Zugang zum Übertragungsmedium. Anwendung

Darstellung

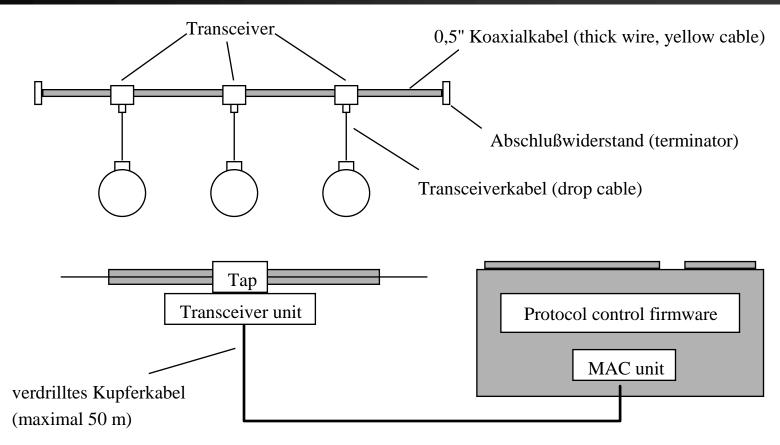
Steuerung

Transport


Vermittlung

Sicherung

Bitübertragung

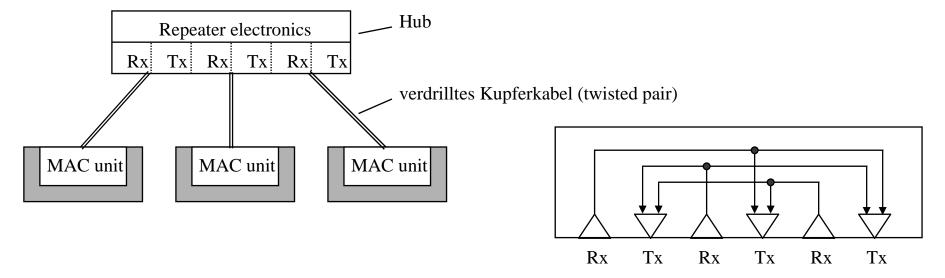

IEEE 802.3 - 10 Base 2

- Ethernet wurde ursprünglich am Xerox PARC entwickelt und von Xerox, DEC und Intel zu einem gemeinsamen Standard ausgearbeitet.
- Der IEEE 802.3-Standard definiert ein CSMA/CD-Verfahren für verschiedene Medien, während Ethernet das Medium Koaxialkabel mit einer Datenrate von 10 Mbps vorschreibt.

Maximale Kabellänge: 200 m Leitungsquerschnitt: 0.25"
 Bitrate: 10 Mbps Übertragung: Basisband

IEEE 802.3 - 10 Base 5

Maximale Kabellänge: 500m


Bitrate: 10 Mbps

Leitungsquerschnitt: 0.5"

Übertragung: Basisband

IEEE 802.3 - 10 Base T/F

 10 Base T (twisted pair) und 10 Base F (fibre optics) beruhen auf einer Stern-Topologie, die aber als gemeinsames, geteiltes Medium betrieben wird.

 Ein Hub wiederholt eingehende Signale auf allen Ausgangsleitungen, wobei eine Verstärkung bzw. Anpassung des Signals (elektrisch - optisch) stattfinden kann.

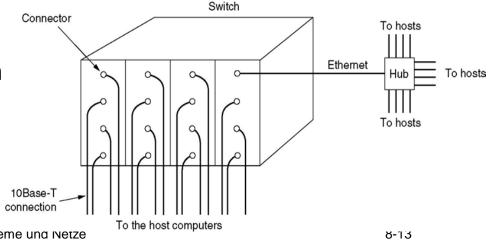
IEEE 802.3 - Rahmenformat

- Die Preamble besteht aus dem Bitmuster 10101010 und dient zur Synchronisation.
- Das Startzeichen (SFD) besteht aus dem Bitmuster 10101011 und kennzeichnet den Anfang eines Rahmens.
- Die Ziel- und Quelladressen sind normalerweise 6 Bytes lang.
- Das Längenfeld beschreibt die Anzahl Bytes im folgenden Datenbereich.
- Falls erforderlich wird der Rahmen auf die Mindestlänge von 64 Bytes aufgefüllt.
- Die Prüfsumme (FCS) wird mit Hilfe des CRC-32-Polynoms berechnet.

	•
Preamble	7 bytes
Start-of-frame delimiter (SFD)	1 byte
Destination MAC address	2 or 6 bytes
Source MAC address	2 or 6 bytes
Length indicator	2 byte
Data	<= 1550 byte
Padding (optional)	
Frame check sequence (FCS)	4 bytes

IEEE 802.3 - CSMA/CD

Ablauf einer Kollision:


 A beginnt zu senden:
 B beginnt zu senden:
 B erkennt die Kollision:
 B sendet JAM Signal:

Backoff:

- Beim i-ten Versuch wird die Übertragung nach n Slotzeiten wiederholt, wobei n eine Zufallszahl aus dem Bereich 0 ... 2ⁱ-1 ist.
- Die Slotzeit für ein 10 Mbps Koaxialkabel mit maximal 2.5 km Länge entspricht 512 Bitzeiten oder 51.2 us.
- Applet-Demo: http://www-mm.informatik.uni-mannheim.de/veranstaltungen/animation/mac/ethern

Switched IEEE 802.3 LANs

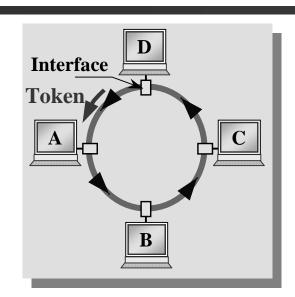
- Problem mit Hubs:
 - alle Stationen sind in einer sogenannten Kollissionsdomäne
 - dadurch kann der erreichbare Durchsatz gering sein
- Verbesserung der Leistung durch
 - höhere Datenrate (bspw. 100Base-T)
 - ,Switching⁶
- Switch lokalisiert ,richtigen 'Ausgang
 - kein Broadcast
 - dadurch keine Kollissionen

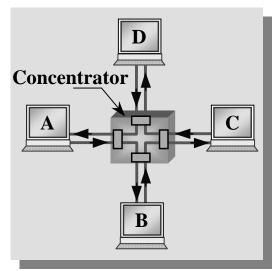
Prof. Dr. Lars Wolf IBR, TU Braunschweig

Betriebssysteme una Netze Sommersemester 2003

Fast Ethernet – IEEE 802.3u, 802.3z

- IEEE 802.3u: High-Speed LAN kompatibel mit Ethernet aber bei 100 Mbit/s
 - Beibehaltung der Prozeduren, Formate, Protokolle
 - Bitzeit verkürzt von 100 ns zu 10 ns
 - aber geringe Netzausdehnung
- IEEE 802.3z: Ethernet bei 1 Gigabit / s
 - Eigentliches Ziel: Beibehaltung der Prozeduren, Formate, Protokolle
 - aber wenn Bitzeit von 100 ns über 10 ns zu 1 ns verkürzt wird, dann ist maximale Ausdehnung auch nur noch 1/100 (ca. 30m)
 - daher zur Abhilfe:
 - zwei Modi Full Duplex, Half Duplex
 - "Carrier Extension" zur Aufblähung der Rahmen
- inzwischen gibt es auch 10 Gbit/s Ethernet: IEEE 802.3ae

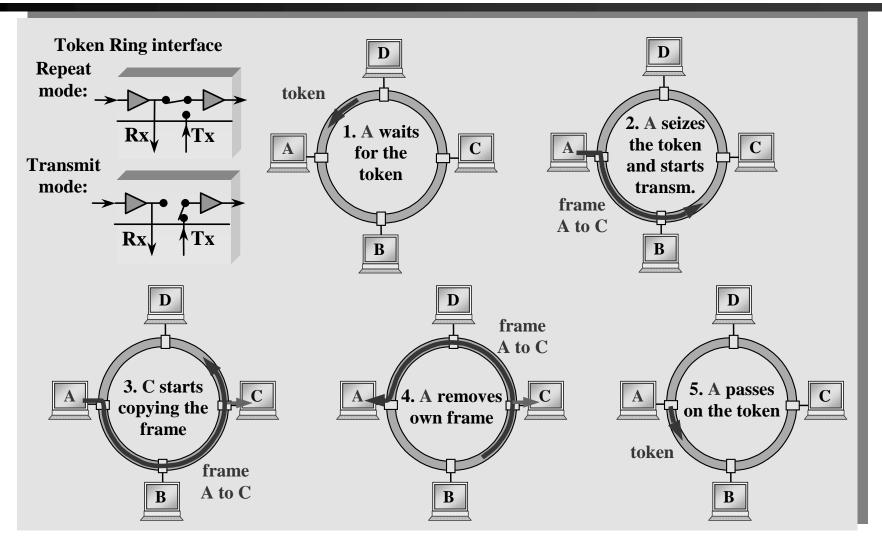

IEEE 802.5 – Prinzip


Übersicht

- Ringtopologie mit Sternverkabelung.
 Nur eine Senderichtung.
- Typischerweise STP-Kabel (andere möglich, z.B. koaxial).
- 4/16 Mbps, < 260 Stationen, < 100 m zwischen den Stationen.

MAC-Protokoll

- Token rotation (token passing) protocol.
- Unterstützung von Echtzeitdatenverkehr:
 - beschränkte Wartezeit für den Medienzugriff wegen begrenzter token holding time.
 - Prioritäten.



IEEE 802.5 - Rahmenformat

- □ Das Startzeichen (SD) und das Endezeichen (ED) sind Bitmuster mit spezieller Kodierung.
- Das Zugriffskontrollbyte (AC) enthält Prioritätsbits,
 Token und Monitorbits und Reservierungsbits.
- Das Rahmenkontrollbyte (FC) definiert den Typ des Rahmens. Kontrollrahmen werden von jedem Knoten interpretiert.
- Die Ziel- und Quelladressen sind normalerweise 6
 Bytes lang.
- Der Datenbereich enthält entweder Daten oder Kontrollinformationen.
- Die Prüfsumme (FCS) wird mit Hilfe des CRC-32-Polynoms berechnet.
- Das Rahmenstatusbyte (FS) zeigt an, ob die Nachricht von einem Empfänger erkannt wurde und ob die Daten vom Empfänger kopiert worden sind.

	1
Start delimiter (SD)	1 byte
Access Control (AC)	1 byte
Frame Control (FC)	1 byte
Destination Address (DA)	
Source Address (SA)	
Data	
	< 5000
	byte
Eromo obook goguenoo (ECC)	1 hz:4a -
Frame check sequence (FCS)	4 bytes
End Delimiter (ED)	1 byte
Frame Status (FS)	1 byte

Token Rotation Protocol

Prof. Dr. Lars Wolf IBR, TU Braunschweig

Betriebssysteme und Netze Sommersemester 2003

IEEE 802.5 - Fehlerkorrektur

Monitorstationen:

- Jeder Ring besitzt genau eine aktive Monitorstation.
- In jeder anderen Station ist eine passive Monitorstation in Bereitschaft.
- Zur Fehlerkorrektur werden spezielle Verwaltungsrahmen (management frames) verschickt: Claim Token, Duplicate Token, Active Monitor Present, Standby Monitor Present, Beacon, Purge
- Aufgaben der Monitorstation:
 - Erkennung und Beseitigung zirkulierender Rahmen.
 - Erkennung verlorengegangener Token.
 - Erkennung mehrerer aktiver Monitore.
- Demo: http://www-mm.informatik.uni-mannheim.de/veranstaltungen/animation/mac/tr/

IEEE 802.11 (Wireless LAN)

- der IEEE 802.11 Standard spezifiziert drahtlose Netze
- zwei Kommunikationformen
 - über eine Infrastruktur (mit Basisstationen, die an ein kabelgebundenes Netz angebunden sind)
 - in Form von Ad hoc Netzen, wo keine Infrastruktur vorhanden ist, sondern die Endgeräte Daten weiterleiten
- Übertragung im ISM-Band (2.4-2.4835 GHz) (Frequenzbereich für industrielle, wissenschaftliche und medizinische Anwendungen)
- Infrarot-Übertragung im Bereich 300-428,000 GHz
- verschiedene Modulations- und Kodierungstechniken mit theoretische Datenraten von 1, 2, 11 oder 54 Mbit/s
- Wireless LAN setzt sich als drahtlose Technik durch und wird auch als UMTS-Rivale gesehen!

Eigenschaften von Weitverkehrsnetzen

- Sehr große Ausdehnung.
- Nicht auf privates Gelände begrenzt.
- Werden von speziellen Betreibern bereit gestellt und betrieben.
- Benutzer mieten sich vom Betreiber Leitungskapazität und bezahlen dafür Benutzungskosten an den Betreiber.
- Nach Aufhebung des Fernmeldemonopols entwickelte sich in Deutschland ein offener Markt, was zu mehr Wettbewerb und damit zu günstigeren Preisen führt.

Entwicklung der WANs

- Basieren historisch gesehen auf Fernsprechnetzen.
- Anfänglich analoge Übertragungstechnik und Vermittlung.
- Heute meist digitale Übertragungstechnik und Vermittlung.
- Übergang zu Dienstintegration (ISDN und B-ISDN).
- Angebot von wohldefinierten Einzeldiensten (Datex-P, Fernsprechen).
- Angebot von Trägerdiensten, auf die der Kunde eigene höhere Protokolle aufsetzt.

Integrated Services Digital Network (ISDN)

- Gründe und Ziele für die Entwicklung von ISDN:
 - Übergang von analoger zu digitaler Vermittlungstechnik.
 - Kürzere Verbindungsaufbauzeiten.
 - Kundenschnittstelle für Sprach- und Datenkommunikation.
 - ISDN-Entwicklung wurde von den Telefonkonzernen angeregt.
 - Standardisiert von der International Telecommuncations Union (ITU).

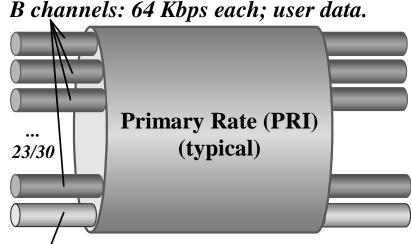
Technische Eigenschaften

- Sprache wird schon im Endsystem digitalisiert und digital mit 64 kbps übertragen.
- Zusätzlich können (gleichzeitig) Daten mit 64 kbps übertragen werden.
- Ein spezieller Kanal mit 16 kbps dient zum Verbindungsaufbau (Signalisierung).
- Ein Basisanschluss (basic rate interface) besteht aus zwei B-Kanälen (jeweils 64 kbps) und einem D-Kanal (16 kbps).
- Ein Primärmultiplexanschluss (primary rate interface) bietet höhere Bitraten:

- H0: 384 kbps

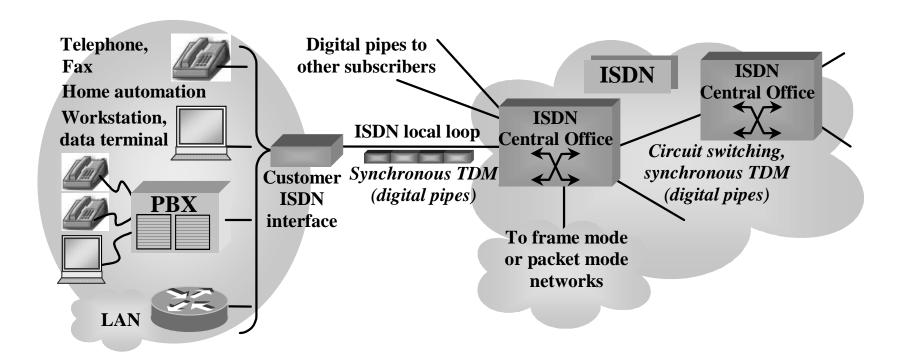
H11: 1536 kbps (24 mal 64 kbps)

H12: 1920 kbps (30 mal 64 kbps)


ISDN-Anschlüsse

- Basis-Anschluß
 - $-2 * 64 \text{ kbit/s} + 16 \text{ kbit/s} (2 * B + D_{16})$
- Primär-Multiplex-Anschluß
 - $-30 * 64 \text{ kbit/s} + 64 \text{ kbit/s} (30 * B + D_{64})$

B channels: 64 Kbps each; user data.

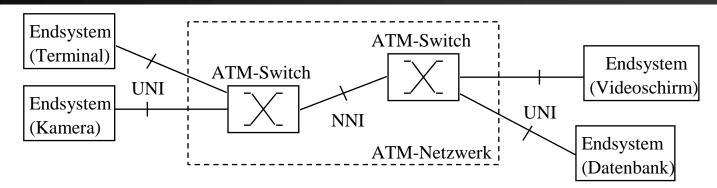

Basic Rate (BRI)

D channel: 16 Kbps; signaling (mainly)

D'channel: 64 Kbps; signaling (mainly)

Struktur des ISDN-Netzes

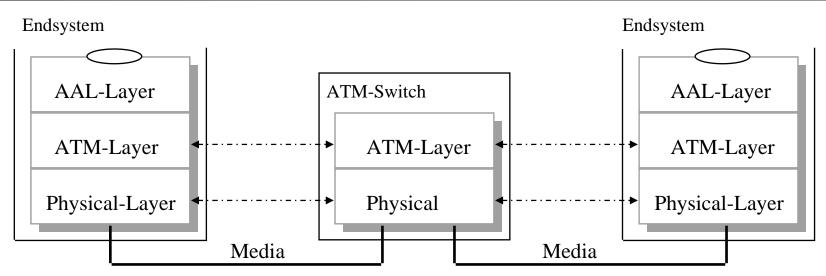
Anschlusstechnik und Signalisierung


Anschlusstechnik:

- Ein Basisanschluss endet an einem Network Termination (NT) Punkt.
- Der NT gehört normalerweise dem Betreiber des ISDN-Netzes.
- Der Anschluss der Endgeräte erfolgt mit einem verdrilltes Kupferkabel, über das der D-Kanal und die beiden B-Kanäle übertragen werden.
- Ziel war die Verwendung existierender Verkabelungen für ISDN.

Signalisierung:

- Konsequente Trennung der Signalisierung (control plane) von den Übertragungskanälen (user plane).
- Intern wird ein separates Signalisierungsprotokoll (common channel signaling system number 7, CCSS-7) eingesetzt.
- Adressierung der Endgeräte über einen service access point identifier (SAPI), der eine Klasse von Endgeräten bestimmt, und einen terminal endpoint identifier (TEI), der ein bestimmtes Endgerät einer Klasse identifiziert.


Asynchronous Transfer Mode (ATM)

• Ziele und Eigenschaften:

- Übertragung verschiedenartiger Datenströme (Audio, Video, Daten, Sprache) über ein gemeinsames breitbandiges Netz.
- Datenströme werden in kleine Zellen (cells) mit einer Länge von 53 Bytes mit 48 Byte Nutzdaten (payload) zerlegt.
- Zellen werden statistisch gemultiplext (asynchronous transfer).
- Ein ATM-Netzwerk besteht aus ATM-Switches, die eintreffende Zellen mit hoher Geschwindigkeit von einer Eingangsleitung auf eine Ausgangsleitung schalten.

ATM - Schichtenmodell

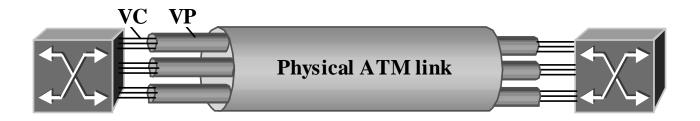
- Aufgaben der Schichten:
 - Der physikalische Schicht überträgt ATM-Zellen über ein bestimmtes Medium.
 - Die ATM-Schicht (ATM layer) ist für den Transport der Zellen vom Sender zum Empfänger verantwortlich.
 - Die ATM-Anpassungsschicht (ATM adaptation layer, AAL) leistet die Anpassung der ATM-Schicht an die Bedürfnisse höherer Protokolle.

ATM - Anpassungsschicht

- Dienstgüteklassen (quality of service):
 - Class A: circuit emulation, constant bit rate (CBR) Video
 - Class B: variable bit rate (VBR) Audio und Video
 - Class C: verbindungsorientierter Datenaustausch
 - Class D: verbindungsloser Datenaustausch
- Anpassungsschichten (ATM adaptation layer):
 - AAL1: Verbindungsorientierter, synchroner Datenverkehr mit konstanter Bitrate.
 - AAL2: Verbindungsorientierter, synchroner Datenverkehr mit variabler Bitrate.
 - AAL3/4: Verbindungsloser, asynchroner Datenverkehr mit variabler Bitrate.
 - AAL5: Vereinfachter verbindungsloser, asynchroner Datenverkehr mit variabler Bitrate.

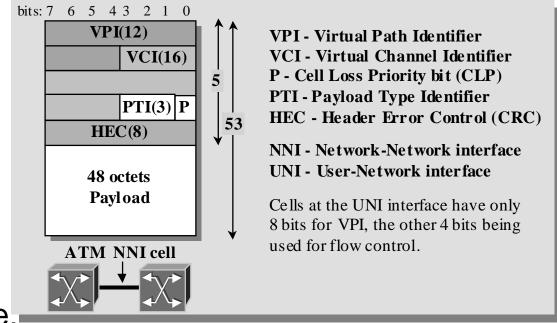
Dienste des ATM Adaptation Layer

Dienstklasse	Klasse A	Klasse B	Klasse C	Klasse D
Bitrate	konstant			
Zeitbeziehung	benötigt nicht b			enötigt
Verbindungsart	ver	verbindungs- los		
Beispiele	isochrone Dienste (Sprache, unkomp. Video)	variable Bitrate mit Zeitbeziehung (komp. Video)	verbindungs- orientierte Datenüber- tragung	verbindungs- lose Datenüber- tragung (LAN)
AAL-	AAL 1	AAL 2	AAL 3/4	
Diensttyp			AAL 5	


ATM - Verbindungen und Pfade

Virtuelle Verbindungen:

- ATM-Verbindungen bestehen aus Kanälen, die in Pfaden zusammengefasst sind.
- Eine virtuelle Verbindung (virtual connection, VC) besteht zwischen zwei Endsystemen.


Virtuelle Links:

- In einem physikalisch vorhandenen Link sind mehrere virtuelle Pfade und darin mehrere virtuelle Links möglich.
- Ein virtueller Pfad wird durch den virtual path identifier (VPI), ein virtueller Kanal durch einen virtual channel identifier (VCI) identifiziert.
- Ein virtueller Pfad bzw. Link existiert zwischen zwei ATM-Switches.

ATM - Zellenformat

 Kleine Zellengröße reduziert die Ende-zu-Ende-Verzögerung, größere Größe spart Bandbreite (warum??).

- 48+5 ist eine Größe, die noch eine sehr gute Sprachqualität (bzgl. der Verzögerung) zulässt.
- Die feste Größe erleichtert die Hardware-Implementierung von Hochgeschwindigkeits-ATM-Switches.

Wavelength Division Multiplexing (WDM)

- Übertragungstechnik mit sehr hohen Datenraten im Gigabit- bis Terrabitbereich.
- Realisiert durch die Benutzung von mehreren verschiedenen Wellenlängen auf optischen Leitern (Glasfaser).
- Derzeit Grundlage für neue Hochgeschwindigkeitsnetze.
- Einige kontrovers diskutierte Fragen:
 - Was benutzt man oberhalb von WDM? ATM oder direkt IP?
 - Wird man irgendwann grundsätzlich direkt über IP telefonieren?
 - Welche neuen Anwendungen werden durch derart hohe Bandbreiten möglich?
 - Werden wir irgendwann den Punkt erreichen, wo Bandbreite so günstig wird, dass die Schonung der Bandbreite kein Thema mehr ist?
 - Wie kann man in Netzen mit sehr hohen Datenraten Verbrauchstatistiken erfassen und welche Abrechungsmodelle sind sinnvoll und praktikabel?